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ABSTRACT 

Purpose: This study addresses the spatial mismatch between regional 
fluoride pollution emission intensity and health risks and proposes an 
optimized industrial layout approach mediated by multi-agent collaborative 
governance. 

Methods: Using 11 provinces and municipalities within the Yangtze River 
Economic Belt as empirical research areas, a comprehensive analytical 
framework is constructed, integrating spatial econometric modeling (spatial 
Durbin model), multi-objective optimization (NSGA-II algorithm), and 
dynamic system simulation. 

Results: The framework quantifies the spatial spillover effects of industrial 
specialization (locational entropy) and economic density on fluoride 
emissions and optimizes industrial migration pathways to balance public 
health and economic development goals. Under the collaborative 
governance scenario, the frequency of regional fluoride emissions exceeding 
the standard decreases from 18.2% in 2015 to 4.3% in 2022, and the DALYs 
lost decrease from 1,35,200 person-years to 86,700 person-years. 

Conclusions: The collaborative economic governance can effectively address 
the spatial mismatch between high pollution and low health outcomes. 

Keywords: Industrial layout; Economic development; Fluoride contamination; 
Management; Regional economic governance 
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INTRODUCTION 

 As the global economic landscape undergoes 
profound changes, the relationship between regional 
economic integration and local government 
governance is becoming a key factor in promoting 
sustainable regional economic development.1 The in-
depth study on the regional cooperative governance 
of Pangkalpinang city analyzing its role and strategic 
significance in urban economic development.2 Gianelle 
et al.3 demonstrated the current situation, existing 
challenges and economic impact of regional 
innovation policy governance, and proposed that good 
regional innovation policy governance can promote 

regional economic growth and enhance regional 
competitiveness. The COVID-19 epidemic has had a 
huge impact on the global economy, and the resilience 
of the regional economy has become a focus of 
attention. China, as an example to analyze the 
relationship between governance capacity, related 
diversity and regional economic resilience.4 While 
fiscal decentralization and good governance positively 
impact Indonesia's regional economic growth, further 
optimization of the decentralization mechanism and 
enhancements to the quality of governance are 
needed.5 
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 The impact of entrepreneurship and governance 
quality on global and regional economic performance 
has attracted attention in the context of globalization 
and sustainable development. The entrepreneurship 
and high-quality governance have a significant role in 
promoting global and regional economic performance 
and an important way to achieve sustainable 
development. The role and function of large regional 
trade agreements in global economic governance.6,7 
Ekeocha et al.8 analyzed the relationship between 
economic policy uncertainty, governance institutions 
and economic performance and their regional 
differences. The impact of local governance and 
regional self-owned income on economic growth and 
found that good local governance and stable self-
owned income sources can promote economic 
growth.9 Suhendra10 demonstrated the in-depth study 
on SIPDD innovation and ARABIKA cabinet projects, 
analyzing their innovations and effects in regional 
development governance. 

 Fluoride (F) contamination, a typical industrially 
derived emerging pollutant, often exhibits a significant 
mismatch between its emission intensity and the 
resulting health risks. High-emission regions do not 
necessarily have high health risks, whereas low-
emission regions can bear a greater disease burden 
due to dense populations or fragile environments. This 
mismatch stems from the disconnect between 
industrial layout, environmental regulation, and public 
health objectives in traditional governance models. 

 This article considers regional economic 
collaborative governance as a vehicle for F pollution 
prevention and control. It constructs an industry-
pollution-health chain analysis model to reveal the 
transmission mechanism by which economic density 
and industrial specialization influence health risks 
through spatial spillover effects. By coupling a spatial 
econometric model (the spatial Durbin model), multi-
objective optimization (the NSGA-II algorithm), and 
dynamic system simulation, it quantifies the trade-offs 
of industrial migration, achieving a closed-loop 
analysis from diagnosis to regulation. 

 The present paper explores the mechanism and 
practical path of regional economic collaborative 
governance in the prevention and control of F 
pollution, and reveals how to achieve scientific 
adjustment of industrial layout and sustainable 
economic development through collaborative 
governance under the guidance of public health. 

 

METHODOLOGY 

Research Area and Data 

 This study selected 11 provinces and municipalities 
within the Yangtze River Economic Belt as the 
empirical region. This region, spanning the eastern, 

central, and western regions, exhibits typical 
characteristics of gradient development. Its 
comprehensive industrial chain provides an ideal 
sample for studying the relationship between 
industrial layout and pollution. To ensure the 
comprehensiveness and accuracy of the data, this 
study constructed a multi-source, multi-dimensional 
comprehensive data system. Industrial economic data 
are primarily sourced from the 2015-2022 provincial 
and municipal statistical yearbooks and the National 
Bureau of Statistics' industrial enterprise database. By 
aggregating enterprise micro-data at the prefecture-
level, it calculates each city's industrial added value, 
location entropy for high-fluorine-emitting industries, 
such as the fluorine chemical industry, ceramics, and 
aluminum electrolysis, and economic density.11,12 

 The location entropy calculation formula, as 
stated: 

LQij = 
(Eij/Ej)

(Ei/E)
 (1) 

 Eij is the industrial added value of industry i in 

prefecture-level city j, Ej is the total industrial added 

value of prefecture-level city j, Ei  is the industrial 
added value of industry i in the entire study area, and 
E is the total industrial added value of the entire study 
area. 

 The construction of the F emission inventory 
integrates the key pollution source data in the annual 
environmental statistics report and the information 
from the national pollution source census, and cross-
checks and verifies the two. The population spatial 
distribution data uses 1×1 km grid data corrected in 
combination with land use types to reflect the actual 
exposure of the population. The prevalence data of 
endemic fluorosis, such as dental and skeletal fluorosis 
are systematically collected from the annual work 
reports of the provincial and municipal centers for 
disease control and prevention.  

 Meteorological data, such as wind speed, wind 
direction, ambient air temperature, and mixing layer 
height are from the National Meteorological 
Information Center (NMIC), and the terrain data uses a 
digital elevation model with a resolution of 30 meters. 
All data are uniformly spatially aligned, interpolated, 
and outlier detected and cleaned through the ArcGIS 
and Python platforms, ultimately forming a set of 
prefecture-level city panel data sets that are 
continuous in time and space and have unified 
standards. During the data integration process, in 
order to ensure the spatial consistency of data from 
different sources, coordinate system integration and 
resampling are performed. The resampling process is 
as follows: 

Vtarget=
∑  n

i=1 wi⋅Vsourcei

∑  n
i=1 wi

 (2) 
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Table 1. Emission characteristic parameters of high fluorine emission industries 

Industry type 
Average emission factor 

(kg/ton product) 
Typical emission height 

(m) 
Emission temperature 

(K) 

Fluorochemical industry 0.18 35 420 

Ceramic manufacturing 0.10 25 380 

Aluminum electrolysis 0.15 40 450 

Thermal power generation 0.06 100 480 

Glass manufacturing 0.08 20 390 

 

 Vtarget is the value of the target grid cell, Vsourcei
 is 

the value of the i-th source grid cell, and wi is the 
weight determined by the sampling method. 

Construction of Core Analysis Framework 

 This study constructs a comprehensive analytical 
framework integrating the industry-pollution-health 
chain to quantify the ultimate impact path of 
industrial economic activities on public health.13,14 
First, in terms of quantifying industrial linkages, based 
on inter-regional input-output tables and enterprise-
level supply chain data, a complex network analysis 
method is applied to calculate the linkage coefficients 
of specific industries between cities. A directed 
weighted network with prefecture-level cities as 
nodes and industrial linkages as edges are constructed 
to depict the spatial topological structure of regional 
industrial collaboration. The strength of the linkage 
between nodes can be quantified by the linkage 
coefficient: 

Rij
k = 

Fij
k

√Fi
k⋅Fj

k

 
(3) 

 Fij
k represent the total factor flow of the industry 

between the two cities, while Fi
k and Fj

k represents the 

total outflow of the industry in city i and city j, 
respectively. 

 The CALPUFF model is used to simulate pollutant 
dispersion. This model effectively handles pollutant 
transport and transformation in complex terrain, such 
as hills and river valleys, and in local circulation 
conditions, such as sea-land breezes and valley-valley 
winds. Simulation inputs include a high-resolution 
spatial and temporal emission source inventory (point 
and area sources), hourly meteorological fields 
(generated by the WRF model), and high-precision 
digital elevation model. CALPUFF simulates the 
spatiotemporal dynamic distribution of F ground 
concentrations by coupling the Gaussian plume 
dispersion algorithm with a terrain dynamics module. 
Its core diffusion formula is as: 

C(x,y,z) =
Q

2πuσyσz

exp (-
y2

2σy
2
) [exp (-

(z-He)2

2σz
2

) + exp (-
(z+He)2

2σz
2

)] (4) 

 C(x,y,z)  is the pollutant concentration at the 
receptor point (x,y,z), Q is the pollution source 
intensity, u is the wind speed, σy  and σz  are the 

horizontal and vertical diffusion parameters, 
respectively, and H is the effective emission height of 
the smoke plume. 

 Table 1 shows the emission characteristic 
parameters of high-fluorine-emitting industries. 
Finally, in the health loss assessment phase, the World 
Health Organization-recommended disability-adjusted 
life years (DALYs) are introduced as a quantitative 
indicator. By reviewing epidemiological literature, a 
dose-response function is established between F 
exposure concentration and the incidence of skeletal 
and dental fluorosis. 

 Fluoride concentration raster data output by 
CALPUFF simulations are spatially overlaid with 
population distribution raster data. Healthy life years 
lost due to F exposure are calculated on a grid-by-grid 
basis and summarized to obtain regional total 
DALYs.15,16 

Spatial Econometric Analysis 

 To analyze the interaction and spillover mechanism 
between industrial layout and F pollution in the spatial 
dimension, the Spatial Durbin Model (SDM) is used for 
empirical testing. The model setting uses the F 
emission intensity of each prefecture-level city as the 
core dependent variable, and the core independent 
variables include the location entropy index 
representing the degree of industrial specialization 
and the economic density representing the intensity of 
economic activities. 

 At the same time, the model introduces control 
variables, such as the technological progress index 
reflecting the level of clean production (proxied by the 
number of patents) and the intensity of environmental 
regulation representing policy pressure (measured by 
the proportion of environmental protection 
investment in GDP).17,18 Table 2 shows the descriptive 
statistical results of the core variables of the Spatial 
Durbin Model. 
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Table 2. Descriptive statistics of core variables in the spatial Doberman model 

Variables Units Mean Std. Dev. Min Max 

Fluoride emission 
intensity (Y) 

Regional F emissions/ area (t/km²) 0.85 0.62 0.12 3.41 

Location quotient 
(LQ) 

Specialization in high-F industries 
(dimensionless) 

1.02 0.48 0.31 2.87 

Economic density 
(ED) 

Industrial added value per unit area 
(10,000 yuan/km²) 

2480.5 18230.5 312.8 8950.2 

Tech progress 
(lnPatent) 

Annual patent grants (natural log) 5.54 1.23 2.30 8.91 

Environmental 
regulation (ERI) 

Environmental investment as GDP 
(%) 

1.21 0.45 0.38 2.85 

 

 Spatial Doberman model formula is as: 

Y = ρWY + Xβ + WXθ + ϵ (5) 

 Y represents the dependent variable vector (F 
emission intensity), X represents the matrix of 
independent variables (including location entropy, 
economic density, and control variables), W 
represents the spatial weight matrix, ρ represents the 
spatial autoregressive coefficients. β and θ represents 
the coefficient vectors of the independent variables 
and their spatial lags, respectively. ϵ represents the 
random error term. 

 A composite weight matrix combining geographic 
contiguity and economic interconnectedness is used 
to capture spatial dependence and spillover effects 
across administrative boundaries. To mitigate the 
potential endogeneity between industrial structure 
and pollution emissions, it selects exogenous policy 
dummy variables, such as each city's historical 
industrial base and whether it is designated a national 
circular economy or eco-industrial demonstration 
park, as instrumental variables. A two-stage least 
squares method is used for parameter estimation. The 
model's estimated results are further decomposed 
using partial differentiation into direct effects (the 
impact of a city's industrial economic activities on its 
pollution) and indirect effects (the impact of economic 
activities in neighboring or economically connected 
cities on its pollution), thereby revealing the necessity 
and potential paths for regional collaborative 
governance. 

Multi-objective Optimization Model Design 

 Based on the patterns revealed by spatial 
econometric analysis, it further designs a multi-
objective optimization model for regional industrial 
layout that is public health-oriented and considers 
multi-agent collaboration. The objective function of 
this model contains two conflicting objectives that 
need to be optimized simultaneously, i.e., one is the 
public health objective, namely minimizing the overall 

regional F exposure health risk f1, specifically defined 
as the proportion of the population whose drinking 
water F concentration exceeds the WHO 
recommended limit (1.5 mg/L). 

minf1 = 
∑  R

r=1 Pr⋅I(Cr>1.5)

∑  R
r=1 Pr

 (6) 

 Pr is the population of the r-th subregion, and Cr is 
the average F concentration in the drinking water of 
the r-th subregion. 

 The second is the economic development goal, 
which is to maximize the average annual growth rate 
f2 of regional industrial added value during the study 
period, as follows: 

maxf2 = (
IVAT

IVA0

)

1

T

-1 (7) 

 IVA0 refers to the regional industrial added value 
during the base period, IVAT  refers to the regional 
industrial added value during period T, and T refers to 
the total number of periods included in the study 
period. 

 The model's decision variables are set as the 
proportion and direction of capacity transfer or 
acquisition of high-F-emitting industries in each city. 
The optimization process must meet multiple 
constraints, such as the primary one is the hard 
constraint of health risk, meaning that the optimized 
layout must ensure that F exposure levels for the 
population in each sub-district remain below the 
acceptable risk threshold: 

1

Pm

∑  

S

s = 1

Pms⋅Cms≤Rm
acc ∀m (8) 

 Pm refers to the total population of the m-th risk 
zone, Pms refers to the population of the s-th sub-
region within the m-th risk zone, Cms refers to the 
average F concentration in drinking water in the s-th 
sub-region within the m-th risk zone, and Rm

acc refers to 
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the acceptable F exposure risk threshold set for the m-
th risk zone. 

 Secondly, there is the economic feasibility 
constraint, which ensures that fluctuations in the 
regional industrial chain completeness index (ECI, 
calculated based on the input-output table) remain 
within a reasonable range to avoid industrial chain 
disruptions due to industrial relocation. The 
constraints are as: 

|
ECIt-ECI0

ECI0
| ≤δ (9) 

 ECI0  refers to the regional industrial chain 
completeness index in the base period, ECIt refers to 
the regional industrial chain completeness index in 
period t, and δ  refers to the maximum relative 
volatility allowed by the industrial chain completeness 
index. 

 Furthermore, socioeconomic constraints, such as 
guaranteed growth rate for industrial added value 
must be set. The model is solved using the NSGA-II 
(non-dominated sorting genetic algorithm). By 
simulating the selection, crossover, and mutation 
processes of biological evolution, it conducts a global 
search under complex constraints, ultimately 
generating a Pareto-optimal solution set that depicts 
the trade-off between economic growth and health 
risks under varying intensities of industrial migration. 

 

RESULTS AND DISCUSSION 

Descriptive Statistics and Spatial Pattern Analysis 

 Spatial interpolation of point and area source 
emission data is performed using the inverse distance 
weighted (IDW) method, with parameters set to a 
power exponent of 2, a neighborhood search radius of 
50 km, and maximum number of neighborhood points 
of 15. This generates a 1 × 1 km resolution raster. The 
raster data is aggregated to prefecture-level city units 
using the Zonal Statistics tool, and average values are 
calculated for each city. Key indicators are extracted 

and descriptive statistical tables are constructed to 
illustrate the spatial pattern characteristics of 
representative cities (Table 3). 

 Tabular analysis reveals significant spatial 
mismatches, i.e., regions with high F emission 
intensities (Hefei, 1.18 t/km²) are geographically 
aligned with high health risks (dental fluorosis 
prevalence of 14.6%), suggesting that industrial 
agglomeration (locational entropy of 1.78) directly 
exacerbates local exposure risks. However, high-
density economic regions, such as Shanghai (economic 
density of 152 million yuan/km²), due to technological 
advancements and strict environmental regulations, 
have emission intensities of only 0.32 t/km² and the 
lowest prevalence (4.8%), forming high economy, low 
pollution pattern.  

 In contrast, some central and western cities 
(Wuhan), despite high levels of industrial 
specialization (locational entropy of 1.48), experience 
significantly higher health risks (11.8%) than eastern 
coastal areas due to lagging governance capacity, 
highlighting the urgency of coordinated regional 
governance. This mismatch stems from the failure to 
internalize environmental externalities associated with 
industrial transfer, necessitating cross-regional policy 
coordination and optimization. 

Spatial Doberman Model Regression Results 

 A regression analysis is conducted using the Spatial 
Durbin Model (SDM) on panel data from prefecture-
level cities in 11 provinces and municipalities within 
the Yangtze River Economic Belt. A composite weight 
matrix (weight ratio 6:4) of geographic proximity and 
economic connections is used to capture cross-
regional spatial dependence. Parameters are 
estimated using a two-stage least squares method. 
Historical industrial base and national eco-industrial 
demonstration park policies are selected as 
instrumental variables to address endogeneity. The 
regression results are decomposed into direct effects 
(the impact of local industrial activities) and indirect 
effects (spatial spillovers) using partial differentiation. 

 

Table 3. The detailed statistics analysis of F pollution, industrial layout and health risks in some prefecture-level cities 
in the Yangtze River Economic Belt 

City 
F-emission 

intensity (t/km²) 
Location 
quotient 

Economic density 
(10⁴ yuan/km²) 

Dental fluorosis 
prevalence (%) 

Shanghai 0.32 0.82 15,200.0 4.8 

Suzhou 0.75 1.32 9,800.5 7.9 

Hangzhou 0.40 0.95 8,600.3 5.1 

Hefei 1.18 1.78 3,600.8 14.6 

Wuhan 0.92 1.48 4,300.6 11.8 
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Figure 1. Decomposition of the spatial effect of industrial layout on F pollution. * represent significant effect 
 
 The detailed effect decomposition is shown in 
Figure 1. Furthermore, the strength of the 
instrumental variables are tested using a one-stage F 
statistic (critical value 10). The validation results are 
shown in Figure 2. Figure 1a shows that the direct 
effect of locational entropy is significantly positive 
(0.251, 95% CI: 0.157–0.345), indicating that 1-unit 
increase in the specialization of high-F-emitting 
industries leads to 25.1% increase in local F emission 
intensity, making it the core driving factor. 

 The direct effect of economic density is 0.182 (95% 
CI: 0.102–0.262), reflecting that industrial expansion 
exacerbates local pollution loads. The direct effects of 
technological progress (lnPatent) and environmental 
regulation (ERI) are -0.153 and -0.204, respectively, 
indicating that innovation investment and policy 
constraints effectively suppress local emissions. Figure 
1b reveals key spatial spillover mechanisms, the 
indirect effect of economic density is -0.104 (95% CI: -
0.206–0.002), indicating that neighborhood industrial 
agglomeration generates negative spillovers through 
technology diffusion. 

 However, the indirect effect of locational entropy 
reaches 0.123, suggesting that industrial specialization 
carries the risk of pollution transfer, such as the 
relocation of high-F industries to areas with weaker 

regulation, leading to cross-border pollution. Industrial 
specialization is the primary cause of local pollution, 
while neighborhood economic agglomeration 
mitigates pollution through knowledge spillovers. It 
must be vigilant against the negative externalities 
caused by industrial transfer and establish a cross-
domain coordinated regulatory mechanism. 

 Figure 2 shows that the first-stage F-statistics for 
all three instrumental variables are significantly above 
the critical value for weak instrumental variables 
(F=10). The F-value for historical industrial base is 25.6 
(p<0.001), reflecting the strong explanatory power of 
industrial heritage on current industrial layout, the F-
value for eco-industrial park policies is 18.3 (p<0.001), 
confirming that policy intervention effectively drives 
industrial spatial restructuring and the combined F-
value reaches 32.7 (p<0.001). The gradient distribution 
of F-statistics (25.6→18.3→32.7) is consistent with 
theoretical expectations historical path dependence 
has stronger explanatory power than single policy, but 
the synergistic effect of policy and historical factors 
are the strongest. The instrumental variables have 
passed validity tests, confirming the robustness of the 
causal inference between industrial layout and 
pollution emissions. 

 

 
Figure 2. One-stage statistics of instrumental variable validity test 
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Table 4. Multi-objective optimization results of industrial layout 

Scheme 
Industry migration 

intensity 
(%) 

Health risk 
reduction 

(%) 

Economic 
growth rate 

(%) 

Industrial 
chain volatility 

(%) 

S1 10.2 12.3 4.5 1.8 

S2 25.6 28.1 6.2 3.5 

S3 30.4 34.7 5.8 4.9 

S4 41.3 37.9 5.1 7.2 

S5 50.0 38.7 4.9 8.6 

 

Analysis of Multi-Objective Optimization Results 

 The NSGA-II algorithm is used to solve the multi-
objective optimization model for industrial layout. The 
parameters are set to population size of 200, a 
crossover probability of 0.9, and mutation probability 
of 0.05. The Pareto frontier solution set is generated 
after 500 iterations. Five typical scenarios are 
selected, and the reduction in health risks and the 
change in economic growth rate under each scenario 
are calculated (Table 4). 

 As the intensity of industrial relocation increases 
from 10.2 to 50.0%, the reduction in health risks 
increases from 12.3 to 38.7%, but the economic 
growth rate does not increase simultaneously. At the 
same time, the volatility of the industrial chain 
increases significantly from 1.8 to 8.6%. This suggests 
that excessive pursuit of health benefits comes at the 
expense of robust economic growth and industrial 
chain security. The S2 option achieves 28.1% reduction 
in health risks while maintaining high economic 
growth rate of 6.2% and low industrial chain volatility 
(3.5%), demonstrating better balance. Therefore, 
industrial relocation adjustments are not necessarily 
about greater relocation intensity; the key lies in 
finding the optimal balance between reduced health 

risks and stable economic development. The moderate 
relocation strategy represented by the S2 option is 
more feasible path to achieving regional coordinated 
governance. 

Empirical Evaluation of Collaborative Governance 
Paths 

 This study constructs a dynamic system simulation 
model to simulate the F pollution control pathways in 
the Yangtze River Economic Belt from 2015 to 2022. 
The Monte Carlo method is used to generate 10,000 
parameter perturbations, with the industrial synergy 
coefficient (0.35-0.85), environmental regulation 
intensity (1.2-2.8), and public health weight (0.4-0.9) 
set as key variables. By coupling the CALPUFF 
atmospheric diffusion model, regional input-output 
model, and health risk assessment module, the 
environmental, economic, and health effects of the 
collaborative governance scheme are quantified. The 
simulation uses a fourth-order Runge-Kutta method to 
solve the differential equations, and the comparison is 
to the baseline scenario, maintaining the existing 
industrial layout and environmental regulation 
intensity, with no collaborative governance measures. 
The output results are shown in Figures 3-5. 

 

 

Figure 3. Frequency of F exceeding standards. 
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Figure 4. Influence of regional industrial chain completeness index 

 

 

Figure 5. The impact of disability-adjusted life years 

 

 The frequency of F violations under the optimized 
scenario shows a continuous downward trend, falling 
from 18.2% in 2015 to 4.3% in 2022. While the 
baseline scenario experiences slight fluctuations in 
some years (2017-2019), the overall decline is limited 
(still 15.8% in 2022). This change suggests that the 
optimization strategy has significant cumulative effect 
on environmental governance, related to 
technological upgrades or strengthened control 
measures. Analysis of the magnitude of the 
differences shows that the gap between the optimized 
scenario and the baseline scenario has widened year 
by year, from an initial zero difference to 11.5% in 
2022, highlighting the long-term efficiency-enhancing 
effect of the optimization measures. Furthermore, the 
baseline scenario experiences abnormal fluctuations 
(the frequency first increases and then decreases), 
possibly due to interference from external factors, 
while the optimized scenario maintains a steady 
decline, indicating stronger ability to resist 
interference. 

 Economic benefit data shows that the Industrial 
Chain Index (ECI) under the optimization scenario 
steadily increases from baseline value of 100.0 in 2015 
to 122.4 in 2022, while the baseline scenario 
experiences more gradual growth (reaching only 106.4 
during the same period). The difference between the 
two scenarios widens from 1.7 in 2016 to 16.0 in 2022. 
This linear growth trend reflects the sustained and 
cumulative impact of the optimization strategy on 
industrial chain integrity. The accelerated growth in 
the optimization scenario after 2020 is particularly 
related to the optimization of industrial structure or 
improved investment efficiency. From volatility 
perspective, the baseline scenario experiences brief 
decline in 2020 (ECI dropped from 104.6 to 102.3), 
influenced by economic cycles or external shocks. The 
optimization scenario maintains consistent positive 
growth, demonstrating greater resilience. In 
conclusion, the optimization strategy not only 
accelerates the growth of economic indicators but also 
enhances system stability, providing a reliable path for 
regional economic development. 
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 The DALYs lost in the optimized scenario drop 
significantly from 135.2 thousand person-years in 
2015 to 86.7 thousand person-years in 2022, while the 
baseline scenario only slightly decreases from 135.2 to 
137.9 during the same period. The gap between the 
two widens from zero to 51.2 thousand person-years. 
This change reveals that the optimization strategy's 
effect on reducing the disease burden has increased 
over time, attributed to the gradual implementation 
of health interventions. From the perspective of loss 
composition, the DALYs in the baseline scenario 
actually increase from 2016 to 2019, reflecting the 
cumulative effect of health risks in the non-optimized 
scenario, while the continued decline in the optimized 
scenario highlights its preventive advantage. The 
optimization strategy can effectively curb the 
expansion of health losses, and its long-term 
implementation can bring substantial improvements, 
providing data support for health-first policies. 

 

CONCLUSION 

 This study, through a comprehensive industry-
pollution-health analysis framework, empirically 
analyzes the spatial correlation between F pollution 
and industrial layout in the Yangtze River Economic 
Belt, demonstrating that regional collaborative 
governance can effectively address the spatial 
mismatch between high pollution and low health. 
However, present research does not fully consider the 
long-term impact of climate change on pollutant 
dispersion, and the dynamic evolution of industrial 
linkage networks needs to be further explored. Future 
research is needed to explore smart regulatory models 
enabled by digital technology and establish linkage 
mechanism between total F emission control and 
regional ecological compensation, providing 
innovative pathways for cross-basin collaborative 
governance. 
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