FLUORIDE

Quarterly Journal of The International Society for Fluoride Research Inc.

Determination of Sodium Fluoride Effects on Germination, Seedling Growth, and Antioxidant Enzyme Activity of Two Buckwheat (Fagopyrum esculentum) Genotypes

Unique digital address (Digital object identifier [DOI] equivalent): https://www.fluorideresearch.online/epub/files/396.pdf

Md. Ramjan SHEIKH¹, Amina Akter SATHI², Disha SAHA³, Lizonnehar LISA⁴, Armany Sayed TOMA⁵, Akhi AKTER⁶, Md. Ekhlas UDDIN⁶, Md. Liton MIAH⁶, Md. Abu SAYED^{1*}

- ¹ Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
- ² Department of Genetic Engineering and Biotechnology, University Rajshahi, Rajshahi 6205, Bangladesh
- ³ Department of Crop Physiology and Ecology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
- ⁴ Department of Agronomy, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
- ⁵ Department of Soil Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
- ⁶ Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Dhaka 1344. Bangladesh

* Corresponding author:

Dr. Md. Abu Sayed Professor Department of Biochemistry Molecular Biology Agriculture, Faculty of

Phone: (+880) 1715-326270 E-mail: sayed bmb@hstu.ac.bd

Submitted: 2025 Jul 05 Accepted: 2025 Sep 20 Published as e396: 2025 Oct 08

Haiee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh

ABSTRACT

Purpose: Stunted growth and reduced yield in buckwheat can be associated with nutrient absorption issues caused by sodium fluoride toxicity.

Methods: An investigation was conducted to examine the effects of sodium fluoride (NaF) at varying concentrations on the morphology and enzyme activity of catalase, peroxidase, and ascorbate during the germination and seedling stages of two buckwheat genotypes, G7 and G14. Seed germination was carefully observed in plastic petri dishes with different NaF concentrations, ranging from 0 (control) to 8.0 mM. Then, the antioxidant enzymes (catalase, peroxidase, and ascorbate peroxidase) and the level of hydrogen peroxide (H2O2), a marker of oxidative stress, were measured using the biochemical method.

Results: Results indicated that the NaF treatment significantly inhibited common buckwheat germination index, seedling growth, and altered oxidative stress markers. In G7, shoot and root lengths decreased by 15.4%-80% and 46.55%-70.69%, respectively, while in G₁₄, reductions were 26.18%-81%.69% and 46.62%-74.12%. Antioxidant enzyme activities, catalase (CAT), and ascorbate peroxidase (APX), declined by 22.84%-60.33% and 2.73%-29.83% in G₇, and by 26.73%-61.33% and 1.70%-40.42% in G₁₄. Conversely, Peroxidase (POX) and hydrogen peroxide (H2O2) increased markedly by 2.34%-33.64% and 8.66%-52.43% in G_7 and 3.68%-50.52% and 10.78%-54.58% in G_{14} , indicating enhanced oxidative stress under sodium fluoride exposure.

Conclusions: This study highlights that NaF exposure significantly altered common buckwheat germination and seedling growth by inducing oxidative stress and disrupting the antioxidant defense mechanism.

Keywords: Common buckwheat; Sodium fluoride; Oxidative stress; Antioxidant enzymes

INTRODUCTION

Common buckwheat (*Fagopyrum esculentum*) is an outcrossing pseudo-cereal crop belonging to the Polygonaceae family, with significant potential in the food processing industry.^{1,2} Its grains are nutritionally rich, containing all essential amino acids, thiaminbinding proteins, essential fatty acids (linoleic and linolenic acids), dietary fiber, minerals, vitamins, and a range of bioactive compounds including flavonoids (rutin, flavonol, quercetin, and vitexin) and fagopyrins.^{3,4} This crop is employed both as a food source and in traditional medicine for bloating, excess blood pressure, elevated cholesterol levels, cardiac issues, diabetes, cancer, edema, skin disorders, and other major medical disorders.^{5,6}

Sodium fluoride is a toxic substance widely used in industry and various human activities. Due to its high electronegativity and reactivity, it is rarely found in pure form in nature. Elevated fluoride levels are often associated with crustal elements, industrial pollutants, and other inorganic substances. The underground water fluoride danger map shows regions in the middle of Australia, Northwestern America, eastern Brazil, and various sections of Africa and Asia. Globally, around 180 million people are at risk, mainly in Asia (51-59%) and Africa (37-46%), with the latter group making up 6.5% of the continent's population. While Bangladesh generally has low fluoride in freshwater, some remote and coastal regions exceed safe limits. 10

Fluoride is beneficial in small amounts for teeth, dental, and bone mineralization, ⁷ but becomes a health threat under chronic high-level exposure, leading to dental, skeletal, and non-skeletal fluorosis in both humans¹¹⁻¹³ and animals.¹⁴⁻¹⁶ Animal studies have documented that long-term ingestion of excess fluoride causes oxidative stress, mitochondrial dysfunction, and inflammation in organs such as the liver, kidney, and testes.¹⁷ In contaminated areas, fluoride exposure also affects crops by disrupting chlorophyll levels, plant metabolism, and causing oxidative damage. 18,19 It can lead to visible injury, reduced stem/root size, and lower yields, though in some cases, higher doses increased biomass.^{20,21} Sodium fluoride (NaF) or fluoride also alters pigment content, biochemical parameters, and growth, causing morphological changes.²²

Seed germination is a vital and complex process that determines seed quality and significantly influences the nutritional and antioxidant properties of plants.²³ It marks the onset of a plant's life cycle, initiating seedling development.²⁴ Biochemical analyses are frequently employed to observe the germination, with particular attention to the final stage, where visible seedling growth occurs, and the initial stage, imbibition, which exhibits notable physiological changes.²⁵ During the major imbibition, water uptake triggers spatial expansion within the seed, leading to radicle

emergence and subsequent root and shoot development.²⁶

Reactive oxygen species (ROSs) are produced from the normal oxidation of oxygen, play a dual role in promoting germination by breaking dormancy through oxidation modification of cellular components, and regulating physiological and hormonal signaling pathways.²⁷ Among them, hydrogen peroxide (H₂O₂) is an essential ROS agent since it may penetrate easily through diverse cell membranes.²⁸ peroxidase, and ascorbate peroxidase are potential antioxidant enzymes that scavenge ROS activity and H₂O₂.²⁹ The purpose of this study was to investigate the effects of various NaF concentrations on common buckwheat germination and seedling growth, as well as to evaluate the activity of antioxidant enzymes during the stages of seed germination and seedling development.

MATERIAL AND METHODS

Experimental Design

The study was conducted under controlled laboratory conditions using two genotypes of common buckwheat seeds, G7 and G14, employing the Randomized Complete Block Design (RCBD) model. The seeds were selected and obtained from the buckwheat germplasm center of the Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Technology University, and Bangladesh. After that, petri dishes were sterilized with the 70% ethanol solution and washed with distilled water. Fifty chosen seeds were set up on plastic petri dishes that were prepared with two sheets of filter paper. Following this, the control group was moistened with 50 ml of distilled water, while the treated group was moistened with NaF solution at concentrations of 2 mM, 4.0 mM, 6 mM, and 8 mM NaF, with three biological replicates. All the petri dishes were placed in a dark place at a constant room temperature. Treatment of the above concentrations was applied at 50 ml/day for 12 days. The number of germinating seeds, germination percentages, germination vigor, vigor index, germination speed, germination index, and coefficient of speed germination were calculated during the germination stage. To evaluate the oxidative stress response during early development, the activities of the antioxidant enzymes catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX), as well as the hydrogen peroxide (H₂O₂) accumulation, were measured in the seedling stage following the methodology of Pelc et al.²⁴

Determination of germination profile

Germination percentage (%)

The seed germination (%) is the proportion of seeds that germinate out of the total number of seeds

planted.³⁰ The number of germinated seeds was counted between 3 and 8 days following the beginning of germination. The germination percentage was calculated according to the following equation.

Germination percentage
$$=\frac{\text{Numbers of normally germinated seedlings}}{\text{Total number of seedlings}} \times 100$$

Germination vigor refers to the number of seeds that successfully germinate when provided with ideal conditions of 25°C, along with appropriate moisture and lighting, during the initial count of germination relative to the total sample size.³⁰ Germination vigor was calculated as per the following equation.

$$\frac{\text{Germination }}{\text{vigor}} = \frac{\text{Number of germinated seeds in the first count}}{\text{Total numbers of seeds}} \times 100$$

The seed vigor index is the summation of the root and shoot length of the plant divided by the germination percentage.³¹ The following equation was used for this calculation.

Germination Speed

The speed of germination quantifies the rate at which seeds germinate compared to the total seed number germinating in a time interval. Germination speed was estimated using the following equation.

$$\frac{\text{Germination}}{\text{speed}} = \frac{\text{N1} \times \text{T1} + \dots + \text{Nn} \times \text{Tn}}{\text{N1} + \text{N2} + \dots + \text{Nn}}$$

Germination Index

The germination index measures both the percentage and number of germinated seeds.³² The calculation of the germination index was performed using the following formula.

$$\begin{array}{ll} \text{Germination} & = \frac{N1}{T1} + \frac{N2}{T2} + \frac{N3}{T3} + \cdots + \frac{Nn}{Tn} \end{array}$$

Coefficient of Speed of Germination

The coefficient of speed of germination refers to the average measure of seeds that have germinated across three replications, measured under controlled laboratory conditions over 8 days from the initiation of germination. The coefficient of speed of germination was calculated according to the following equation.

$$\frac{\text{Coefficient of}}{\text{speed germination}} = \frac{\text{Average number of seedlings}}{\text{Number of days}}$$

Root Length

The root length was measured using a scale at 6 and 12 days after germination.

Shoot Length

The shoot length was measured using a scale at 6 and 12 days after germination.

Determination of Antioxidant Enzyme Assay

Extraction of plant enzymes from buckwheat shoot samples

Shoot samples were collected from the control and treated groups. About 50 mg of shoot samples were homogenized with 3 ml of 50 mM potassium phosphate buffer (pH 8.0) at 4°C. Subsequently, the homogenized mixture underwent centrifugation at $15,000 \times g$ for 20 minutes, after which the supernatant was stored for the antioxidant enzyme assay.

Catalase (CAT) activity was determined according to the procedure of Siddiqui et al. 33 This method involves detecting the decrease in absorbance produced by H_2O_2 breakdown in samples at 240 nm. The enzyme activity was calculated by the following formula-

$$\frac{\text{CAT}}{(\text{mMoleg}^{-1}\text{FW})} = \frac{(\text{Absorbance difference /min}) \times \text{Dilution factor (DF)}}{40}$$

The measurement of peroxidase (POD) activity was conducted via spectroscopy, utilizing the oxidative degradation of guaiacol in the presence of H_2O_2 . The following formula calculates the enzyme activity-

$$\frac{\text{POD}}{\text{(}\mu\text{mol g}^{-1}\text{FW)}} = \frac{\text{(Absorbance difference /min)} \times \text{DF}}{26.6}$$

Ascorbate peroxidase (APX) activity was assessed through spectroscopy, focusing on the scavenging of H2O2 in the presence of APX.³⁴ The following formula was used to determine the enzyme activity-

$$\frac{APX}{(Ug^{-1}FW)} = \frac{(Absorbance difference / min) \times DF}{2.8}$$

Hydrogen peroxide (H_2O_2) activity was measured using the method mentioned in Rasel et al.³⁵ Briefly, 0.1 g of the buckwheat shoot sample was taken, to which 1 ml of 0.1% trichloroacetic acid was added. The sample underwent grinding followed by centrifugation at $10,000 \times g$ for a duration of 15 minutes. Subsequently, equal volumes of potassium phosphate buffer (0.5 ml) and potassium iodide solution (0.5 ml) were mixed with 1 ml of extract and incubated in the shade for a single hour. Finally, the absorbance of the mixture was recorded by spectroscopy at 390 nm.

Statistical data analysis

The mean and standard deviation were calculated using the data of two morphological traits, six germination profiles, and three antioxidant enzymes by R Studio v.4.2.3.³⁶

Table 1. Effects of different levels of NaF (0, 2, 4, 6, and 8 mM) on the germination (%), vigour germination (%), vigour index, speed of germination day/seed, germination index, and coefficient of speed germination in the early germination stages of two common buckwheat genotypes

Buckwheat genotypes	NaF (mM)	Germination (%)	Vigor Germination (%)	Vigor index	Speed germination	Germination index	Coefficient of the speed of germination
G ₇	0	98.00 ± 2.00 ^a	36.66 ± 3.05 ^{ab}	2544.53 ± 122.07 ^a	2.23 ± 0.15 ^{abc}	12.50 ± 0.51ab	6.96 ± 0.15ª
	2	92.66 ± 3.05 ^{ab}	35.33 ± 3.05 ^{ab}	1951.66 ± 103.46 ^{ab}	2.20 ± 0.10 ^{abc}	11.83 ± 0.51 ^{bcd}	6.56 ± 0.20 ^{ab}
	4	90.66 ± 3.05 ^{bc}	32.66 ± 2.30 ^{ab}	2131.06 ± 186.39ab	2.36 ± 0.15 ^{ab}	11.36 ± 0.20 ^{cde}	6.43 ± 0.25 ^{bc}
	6	84.00 ± 2.00 ^{cd}	29.33 ± 3.05 ^b	2165.00 ± 277.36 ^{ab}	2.30 ± 0.17 ^{abc}	10.63 ± 0.20 ^{ef}	5.96 ± 0.15 ^{cde}
	8	82.00 ± 2.00 ^d	32.00 ± 2.00 ^b	1684.66 ± 434.72b	2.30 ± 0.17 ^{abc}	10.46 ± 0.15 ^{ef}	5.83 ± 0.15 ^{de}
G ₁₄	0	99.33 ± 1.15ª	40.00 ± 2.00 ^a	2450.00 ± 200.00ab	2.03 ± 0.05°	13.13 ± 0.23ª	7.06 ± 0.05ª
	2	94.00 ± 2.00 ^{ab}	34.66 ± 1.15 ^{ab}	2009.33 ± 338.40 ^{ab}	2.13 ± 0.05 ^{bc}	12.10 ± 0.36 ^{bc}	6.66 ± 0.15 ^{ab}
	4	90.00 ± 2.00 ^{bc}	30.00 ± 2.00b	2298.80 ± 166.06ab	2.46 ± 0.05°	11.03 ± 0.35 ^{def}	6.30 ± 0.17 ^{bcd}
	6	84.00 ± 2.00 ^{cd}	32.00 ± 2.00 ^b	1916.26 ± 113.96 ^{ab}	2.20 ± 0.00 ^{abc}	10.83 ± 0.20 ^{ef}	5.96 ± 0.15 ^{cde}
	8	80.00 ± 2.00 ^d	29.33 ± 3.05 ^b	1841.80 ± 366.18 ^{ab}	2.23 ± 0.15 ^{abc}	10.23 ± 0.15 ^f	5.66 ± 0.15 ^e

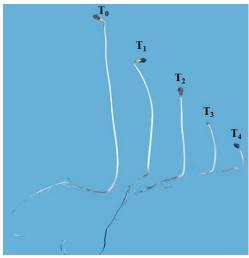


Figure 1. Shoot and root lengths gradually decreased as NaF concentrations increased

RESULTS

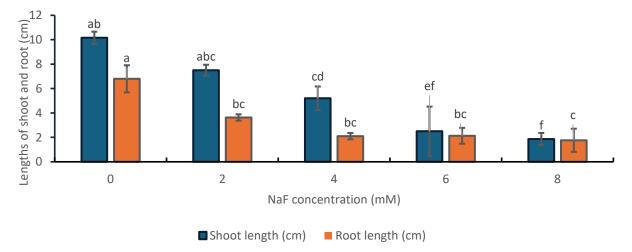
Physiological Parameters Based on NaF Stress

Table 1 presents the germination profile data of the two different buckwheat genotypes. Research has shown that NaF has negative effects on seed germination. The control treatment displayed the highest performance, with the maximum percentage of germination observed. The G_{14} genotype showed an impressive germination rate of 99.33%, while the G_{7} genotype achieved a slightly lower rate of 98.00%. Two different buckwheat genotypes were treated with varying concentrations of NaF (2, 4, 6, and 8 mM) to

investigate their germination rates across various ranges, as shown in Table 1. As the concentrations of NaF increased, germination rates were negatively affected. After treating the seeds with 2 mM NaF, the G_7 genotype exhibited a germination rate of 92.66%, while the G14 genotype showed an impressive 94% germination rate. Interestingly, the germination rates of both seeds showed similarity when exposed to NaF at concentrations of 4 mM and 6 mM, resulting in rates of 90% and 84%, respectively.

When subjected to sodium fluoride treatment, the vulnerable buckwheat genotypes G_7 and G_{14} exhibited detrimental effects and a notable decrease in multiple

germination-related traits (such as the vigor index, average vigor germination, index germination, and coefficient of germination). The control treatment of the two genotypes yielded the highest vigor index results; however, as the NaF treatment level increased, the germination scale decreased significantly. In the case of Genotype 14, there was a notable increase in the vigor index when treated with 4 mM NaF, reaching a value of 2298.80. This contrasts with the vigor index 2009.33 observed for the 2 mM NaF treatment. On the other hand, the speed of germination per day showed improvement as the treatment increased. The G_7 and G14 genotypes showed the highest result at the 4 mM treatment, with values of 2.36 and 2.46, respectively.


This study found that excess NaF concentration affects the morphological features of buckwheat. In the case of the G₇ genotype, when treated with 4 mM NaF, the shoot length measured 7.06 cm, indicating a reduction of approximately 29.4% compared to the control group (0 mM NaF) (Table 2). Subsequently, at 6 mM, the length measured 3.53 cm, which showed a notable decrease of 64.7%. Subsequently, when exposed to 8 mM NaF, the reduction in shoot height was estimated to be 80% lower than that of the control. Contrastingly, the shoot length of the G14 exhibited a

greater decrease than that of the first genotype. At a concentration of 4 mM, the length decreased by nearly 50%, specifically 5.20 cm, in comparison to the control.

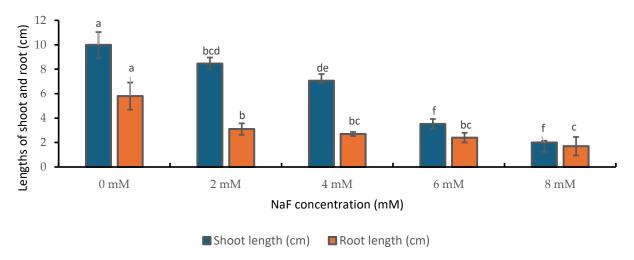

At the concentration of 8mM NaF, the length measured 1.86 cm, which was significantly reduced in comparison to the control. In the case of G₇ genotypes of buckwheat, there was a significant decrease in root length when exposed to NaF concentrations of 2 mM and 6 mM. The reduction was 27% and 34.01%, respectively, compared to the controls, with root lengths of 3.10 cm and 2.40 cm. Lastly, a 40.01% decrease in root length was observed at the 8 mM concentration. In contrast, the length of G₁₄ genotypes decreased by 30.17% when treated with a 2 mM NaF concentration compared to the control. A noticeable decrease was observed as the concentration increased. But, in the highest concentration of NaF (8 mM), the root length experienced a significant reduction of 50.04% compared to the root length of the control plant, measuring 1.76 cm. With an increase in NaF content, shoot and root lengths steadily reduced (Figure 1). Furthermore, these effects were most noticeable in genotype 14 between G7 (Figures 2 and 3).

Table 2. Effects of different concentrations of NaF (mM) on root length and shoot length in early germination stages of two common buckwheat genotypes

Buckwheat genotypes	NaF (mM)	Shoot length (cm)	Root length (cm)
	0	10.00 ± 0.50^{ab}	5.80 ± 1.11^{a}
	2	8.46 ± 0.45^{abc}	3.10 ± 0.26 ^{bc}
G_7	4	7.06 ± 0.97^{cd}	2.70 ± 0.26 ^{bc}
	6	3.53 ± 2.02 ^{ef}	2.40 ± 0.65 ^{bc}
	8	2.00 ± 0.50 ^f	1.70 ± 0.95 ^c
	0	10.16 ± 1.04 ^a	6.80 ± 1.11 ^a
	2	7.50 ± 0.50^{bcd}	3.63 ± 0.47^{b}
G ₁₄	4	5.20 ± 0.55 ^{de}	2.10 ± 0.17 ^{bc}
	6	2.50 ± 0.40 ^f	2.13 ± 0.40 ^{bc}
	8	1.86 ± 0.15 ^f	1.76 ± 0.76°

Figure 2. Effects of different concentrations (0, 2, 4, 6, and 8 mM) of NaF on root length and shoot length in the seedling stage of common buckwheat (G_7)

Figure 3. Effects of different concentrations (0, 2, 4, 6, and 8 mM) of NaF on root length and shoot length in the seedling stage of common buckwheat (G_{14})

Antioxidant enzyme activity

Sodium fluoride has a detrimental effect on plants by raising the concentration of ROS species. To investigate the salinity level, buckwheat was subjected to sodium fluoride stress. This study highlights a significant reduction in growth levels and antioxidant enzyme content (POX, CAT, and APX) and ROS content (H₂O₂) in seedlings exposed to NaF when compared with the control group that was tested using a concentration-dependent analysis of antioxidant enzyme activity (0, 2, 4, 6, and 8 mM NaF). For both genotypes, CAT and APX activity significantly decreased at 8 mM of sodium fluoride (Table 3). The concentration of NaF caused the greatest inhibition of enzyme activity when compared to the control; this was 11.11% for the G₇ cultivar and 11.24% for the G₁₄ cultivar. This is because high fluoride levels can damage the globular structures of enzymatic proteins like APX and CAT. Nonetheless, the G₇ genotype demonstrated a similar outcome to the 8 mM concentration, which was 19.35, at a 4 mM NaF concentration. In the end, ROS exceeded the threshold, leading to the emergence

of injury symptoms. A progressive rise in POX and H_2O_2 activity was noted in both varieties, with a peak observed at 8 mM. The concentration of NaF caused the largest increase in POX activity, 2.86 and 2.46, which was 72% and 80% higher than the control for G_7 and G_{14} , respectively.

However, the G_7 cultivar showed a significant stimulation of POX activity for concentrations of 4 mM and 6 mM, which were 32% and 65% higher than the control, respectively. In contrast, the G₁₄ cultivar showed a significant increase in activity for the 6 mM concentration, which was 45% higher than the control. Like this, the greatest increase in H2O2 activity was observed for 8 mM NaF concentrations of 11.75 and 12.02, which were 65.6% and 61.6% higher than the control for G₇ and G₁₄, respectively. However, both genotypes displayed the same result at 2 mM concentration, which was 6.12. Meanwhile, for G₇ and G₁₄, the levels were 9.05 and 10.30 at 6 mM concentration, indicating 34.6% and 48.4%, respectively.

Table 3. Effects of different NaF concentrations on antioxidant enzymes (POX, CAT, APX) and H₂O₂ activities in the seedling stage of the two common buckwheat genotypes

Buckwheat genotypes	NaF (mM)	Peroxidase (μmol g ⁻¹ FW)	Catalase (mMoleg ⁻¹ FW)	Ascorbate peroxidase (Ug ⁻¹ FW)	H ₂ O ₂ (μmol/g FW)
	0	2.14 ± 0.18^{abc}	1.84 ± 0.04^{b}	22.69 ± 7.72ab	5.59 ± 0.28 ^f
	2	2.19 ± 0.17^{abc}	1.42 ± 0.06 ^c	22.07 ± 3.40 ^{ab}	6.12 ± 0.13 ^{ef}
G_7	4	2.46 ± 0.04^{ab}	1.17 ± 0.02^{de}	19.35 ± 3.33 ^{abc}	7.29 ± 0.35 ^{de}
	6	2.79 ± 0.14 ^a	0.96 ± 0.03 ^f	17.30 ± 2.54ab	9.05 ± 0.38 ^{bc}
	8	2.86 ± 0.25 ^a	0.73 ± 0.11^g	14.52 ± 1.33 ^{abc}	11.75 ± 0.55 ^a
	0	1.66 ± 0.32 ^c	2.02 ± 0.07 ^a	27.61 ± 1.79bc	5.46 ± 0.50 ^f
	2	1.63 ± 0.34°	1.48 ± 0.05 ^c	27.14 ± 13.38 ^a	6.12 ± 0.22 ^{ef}
G ₁₄	4	1.71 ± 0.55 ^{bc}	1.34 ± 0.08 ^{cd}	22.14 ± 11.6 ^{bc}	7.70 ± 0.39 ^{cd}
	6	2.11 ± 0.18 ^{abc}	1.07 ± 0.07ef	20.57 ± 2.62bc	10.30 ± 1.14b
	8	2.46 ± 0.12ab	0.78 ± 0.09 ^g	16.45 ± 1.5°	12.02 ± 0.75 ^a

DISCUSSION

There is increasing concern about the adverse effects of high NaF concentrations on plant health and development. NaF has been widely used as a model for assessing crop tolerance to abiotic stress, particularly during germination.³⁷⁻³⁹ Numerous studies have reported that NaF negatively impacts seed germination and seedling growth by disrupting chloroplast and mitochondrial structures, impairing membrane permeability, and reducing photosynthetic efficiency. ⁴⁰⁻⁴⁵ Our findings are consistent with this, as we observed significant reductions in both shoot and root lengths in buckwheat seedlings exposed to increasing concentrations of NaF, suggesting inhibited cellular elongation and nutrient transport under fluoride stress.

Previous studies have also shown that NaF acts as a metabolic inhibitor during early development, decreasing germination rate, vigor index, and tolerance index. 46,47 We observed similar trends, with NaF-treated seedlings displaying reduced germination index and seedling growth, particularly at higher concentrations. Such reductions are frequently attributed to the accumulation of reactive oxygen species (ROS), which cause oxidative damage to cellular structures. 48-51

In the present study, NaF exposure led to a notable increase in H_2O_2 content, confirming enhanced oxidative stress during the seedling stage. These findings align with previous studies that demonstrated that NaF elevates ROS production in stressed plants. 52,53 Despite the upregulation of H_2O_2 , the activity of key antioxidant enzymes, catalase (CAT) and ascorbate peroxidase (APX), significantly decreased in NaF-treated plants. These findings support previous research indicating that fluoride stress suppresses primary antioxidant enzymes, weakening the plant's defense system. 54 Reduced CAT activity, in particular, may impair H_2O_2 detoxification, resulting in cellular damage and lipid peroxidation. $^{55.56}$

Interestingly, peroxidase (POX) activity increased with NaF concentration, which may reflect a compensatory response aimed at mitigating ROS accumulation. Similar observations were made in *Cicer arietinum* and soybean (*Glycine max*) under NaF stress, where POX activity rose as part of the plant's adaptive mechanism. ⁵⁷⁻⁵⁹ Our results suggest that while buckwheat activates secondary antioxidant pathways like POX under stress, its primary ROS-scavenging system (CAT and APX) becomes compromised, leading to imbalanced redox homeostasis and stunted growth.

Overall, this study indicates that NaF induces oxidative stress in common buckwheat seedlings by disrupting antioxidant enzyme activities, altering the germination profile, and inhibiting shoot and root development. These responses highlight the significance of genotype-specific defensive

mechanisms, which may be investigated further to find cultivars that are resistant to NaF.

CONCLUSIONS

The present study determined that the common buckwheat (G7 and G14) showed sensitivity to NaFstress, as evident from reduced germination and morphological growth, along with imbalanced antioxidant enzyme activity, indicating limited adaptive response under NaF exposure. Among the two genotypes, G14 showed the best tolerance to NaF stress. Higher concentrations reduced root and shoot length, biomass, and significantly affected ROSscavenging enzyme activities. While antioxidant enzymes such as APX, CAT, and POX were activated in response to oxidative stress, these defenses were not sufficient to prevent growth inhibition, indicating that NaF exposure adversely affects overall plant development. This study, conducted under laboratory conditions with limited NaF concentrations and two common buckwheat genotypes, G₇ and G₁₄, may not fully represent field responses. Future studies should include field trials, a wider range of NaF levels, more genotypes, and additional stress-related markers. Studying yield, grain quality, and mitigation strategies will also improve the understanding of fluoride stress.

ACKNOWLEDGEMENTS

Each writer contributed equally to this work. Thank you to the co-authors for their valuable assistance, financial support, editing, and writing efforts, which contributed significantly to the study's success.

FUNDING

Not applicable.

CONFLICT OF INTERESTS

None.

REFERENCES

- [1] Wijngaard HH, Arendt EK. Buckwheat. Cereal Chem 2006;83:391-401. Doi: 10.1094/CC-83-0391
- [2] Zhou M, Tang Y, Deng X, Ruan C, Kreft I, Tang Y, et al. Overview of buckwheat resources in the world. In Buckwheat Germplasm in the World. Elsevier 2018:1-7. Doi: 10.1016/B978-0-12-811006-5.00001-X
- [3] Sofi SA, Ahmed N, Farooq A, Rafiq S, Zargar SM, Kamran F, et al. Nutritional and bioactive characteristics of buckwheat and its potential for developing gluten-free products: An updated overview. Food Sci Nutr 2023;11:2256-2276. Doi: 10.1002/fsn3.3166

- [4] Verma KC, Rana AS, Joshi N, Bhatt D. Review on common buckwheat (Fagopyrum esculentum Moench): A potent Himalayan crop. Ann Phytomed 2020;9:125-133. Doi: 10.21276/ap.2020.9.2.10
- [5] Mondal S, Bhar K, Sahoo SK, Seru G, Ashfaquddin Md, Pradhan NK, et al. Silver hull buckwheat (*Fagopyrum esculentum* Moench) is a part of nature that offers best health and honour. J Complement Altern Med Res 2021:22-52. Doi: 10.9734/jocamr/2021/v15i230262
- [6] Sheikh MR, Abedin MT, Uddin ME, Toma AS, Lisa L, Saha D, Sayed MA. Genomic insights into the cultivated common buckwheat: A comprehensive review on genetic diversity, population structure, and marker technologies. Int J Agric Vet Sci 2024:6(3),60-69. Doi: 10.34104/ijavs.024.060069
- [7] Adler P, Armstrong WD, Bell ME, Bhussry BR, Büttner W, Cremer H-D, et al. Fluorides and human health. World Health Organization Monograph Series No. 59. Geneva: World Health Organization, 1970
- [8] Millán-Martínez M, Sánchez-Rodas D, De La Campa AMS, De La Rosa J. Contribution of anthropogenic and natural sources in PM10 during North African dust events in Southern Europe. Environ Pollut 2021;290:118065. Doi: 10.1016/j.envpol.2021.118065
- [9] Podgorski J, Berg M. Global analysis and prediction of fluoride in groundwater. Nat Commun 2022:13(1):4232. Doi: 10.1038/s41467-022-31940-x
- [10] Hoque AKF, Khaliquzzaman M, Hossain MD, Khan AH. Fluoride levels in different drinking water sources in Bangladesh. Fluoride 2003;36(1):38-44
- [11] Choubisa SL, Choubisa L, Choubisa D. Osteo-dental fluorosis in relation to nutritional status, living habits and occupation in rural areas of Rajasthan, India. Fluoride 2009; 42(3):210-215
- [12] Choubisa SL. A brief and critical review of endemic hydrofluorosis in Rajasthan, India. Fluoride 2018;51(1):13-33
- [13] Choubisa SL, Choubisa D, Choubisa A. Are children in India safe from fluoride exposure in terms of mental health? This needs attention. J Pharmaceut Pharmacol Res 2024; 7(11);1-6. Doi:10.31579/2688-7517/215
- [14] Choubisa SL, Mishra GV, Sheikh Z, Bhardwaj B, Mali P, Jaroli VJ. Food, fluoride, and fluorosis in domestic ruminants in the Dungarpur district of Rajasthan, India. Fluoride 2011;44(2):70-76
- [15] Choubisa SL. A brief and critical review on hydrofluorosis in diverse species of domestic animals in India. Environ Geochem Health 2018;40(1):99-114. Doi: 10/1007/s 10653-017-9913-x
- [16] Choubisa SL, Choubisa D. Status of industrial fluoride pollution and its diverse adverse health effects in man and domestic animals in India. Environ Sci Pollut Res 2016; 23(8):244-7254. Doi: 10.1007/s11356-016-6319-8
- [17] Sharma P, Verma PK, Sood S, Singh M, Verma D. Impact of chronic sodium fluoride toxicity on antioxidant capacity, biochemical parameters, and histomorphology in cardiac, hepatic, and renal tissues of Wistar rats. Biol Trace Elem Res 2023;201(1):229-41
- [18] Makete N, Rizzu M, Seddaiu G, Gohole L, Otinga A. Fluoride toxicity in cropping systems: Mitigation, adaptation strategies and related mechanisms—A review. Sci Total Environ 2022;833:155129. Doi: 10.1016/j.scitotenv.2022.155129
- [19] Choubisa SL, Choubisa D, Choubisa A. Fluoride contamination of groundwater and its threat to health of

- villagers and their domestic animals and agriculture crops in rural Rajasthan, India. Environ Geochem Health 2023;45:607-628.
- [20] Rizzu M, Tanda A, Cappai C, Roggero PP, Seddaiu G. Impacts of soil and water fluoride contamination on the safety and productivity of food and feed crops: A systematic review. Sci Total Environ 2021;787:147650. Doi: 10.1016/j.scitotenv.2021.147650
- [21] Choubisa SL. Is naturally fluoride contaminated groundwater irrigation safe for the health of agricultural crops in India? Poll Commun Health Effects 2023;1(2):1-8. Doi:10.59657/2993-5776.brs.23.006
- [22] Nagar A, Jangde S. Effect of sodium fluoride on germination, seedling growth, and biochemical attributes in linseed varieties (*Linum usitatissimum L.*). Emerg Life Sci Res 2023;9:314-324. Doi: 10.31783/elsr.2023.92314324
- [23] Liu S, Wang W, Lu H, Shu Q, Zhang Y, Chen Q, et al. New perspectives on physiological, biochemical and bioactive components during germination of edible seeds: A review. Trends Food Sci Technol 2022;123:187-197. Doi: 10.1016/j.tifs.2022.02.029
- [24] Pelc J, Śnioszek M, Wróbel J, Telesiński A. Effect of fluoride on germination, early growth and antioxidant enzymes activity of three winter wheat (*Triticum aestivum* L.) Cultivars. Appl Sci 2020;10(19):6971. Doi: 10.3390/app10196971
- [25] Farooq MA, Ma W, Shen S, Gu A. Underlying biochemical and molecular mechanisms for seed germination. Int J Mol Sci 2022; 23:8502. Doi: 10.3390/ijms23158502
- [26] Wolny E, Betekhtin A, Rojek M, Braszewska-Zalewska A, Lusinska J, Hasterok R. Germination and the early stages of seedling development in *Brachypodium distachyon*. Int J Mol Sci 2018;19:2916. Doi: 10.3390/ijms19102916
- [27] Farooq MA, Zhang X, Zafar MM, Ma W, Zhao J. Roles of reactive oxygen species and mitochondria in seed germination. Front Plant Sci 2021; 12:781734. Doi: 10.3389/fpls.2021.781734
- [28] Stone JR, Yang S. Hydrogen peroxide: A signaling messenger. Antioxid Redox Signal 2006; 8:243-270. Doi: 10.1089/ars.2006.8.243
- [29] Anjum NA, Sharma P, Gill SS, Hasanuzzaman M, Khan EA, Kachhap K, et al. Catalase and ascorbate peroxidase-Representative H₂O₂-detoxifying heme enzymes in plants. Environ. Sci. Pollut. Res 2016;23:19002-19029. Doi: 10.1007/s11356-016-7309-6
- [30] Aliyas IM, Kassim GY, Mutlak NN. Evaluation of some germination characteristics for buckwheat seeds under experimental ecology conditions. Int J Sci Res Publ 2015;5:634-638
- [31] Sridhar KR, Sukesh S. Seed dormancy and germination in two wild genotypes of Sesbania of the southwest mangroves in India. J Agric Sci Technol 2015;11:895-902
- [32] Javaid MM, Florentine S, Ali HH, Weller S. Effect of environmental factors on the germination and emergence of Salvia verbenaca L. cultivars (verbenaca and vernalis): An invasive species in semi-arid and arid rangeland regions. PLoS ONE 2018;13:e0194319. Doi: 10.1371/journal.pone.0194319
- [33] Siddiqui MN, Mostofa MG, Akter MM, Srivastava AK, Sayed MA, Hasan MS, et al. Impact of salt-induced toxicity on growth and yield-potential of local wheat cultivars: Oxidative stress and ion toxicity are among the major determinants of salt-tolerant capacity. Chemosphere 2017;187:385-394. Doi: 10.1016/j.chemosphere.2017.08.078

- [34] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 1981;22(5):867-870. Doi: 10.1093/oxfordjournals.pcp.a076232
- [35] Rasel M, Tahjib-Ul-Arif M, Hossain MA, Sayed MA, Hassan L. Discerning of rice landraces (*Oryza sativa* L.) for morphophysiological, antioxidant enzyme activity, and molecular markers' responses to induced salt stress at the seedling stage. J Plant Growth Regul 2020;39:41-59. Doi: 10.1007/s00344-019-09962-5
- [36] Sheikh MR, Shafiuzzaman M, Khan A, Turin MTS, Abedin MT, Sayed MA. Et al. Morphophysiological characterization of buckwheat landraces toward the development of germplasm in Bangladesh. SABRAO J Breed Genet 2024;56:1501-1512. Doi: 10.54910/sabrao2024.56.4.16
- [37] Elloumi N, Abdallah F, Mezghani I, Rhouma A, Boukhris M. Effect of fluoride on almond seedlings in culture solution. Fluoride 2005;38(3):193
- [38] Gupta S, Banerjee S, Mondala S. Phytotoxicity of fluoride in the germination of paddy (*Oryza sativa*) and its effect on the physiology and biochemistry of germinated seedlings. Fluoride 2009;42(2):142
- [39] Saleh AAH, Abdel-Kader DZ. Metabolic responses of two Helianthus annuus cultivars to different fluoride concentrations during germination and seedling growth stages. Egypt J Biol 2003;5(1):43-54
- [40] Gautam R, Bhardwaj N. Bioaccumulation of fluoride in different plant parts of *Hordeum vulgare* (Barley) var. RD-2683 from irrigation water. Fluoride 2010;43(1):57-60
- [41] Kumari S, Dhankhar H, Abrol V, Yadav AK. Bioaccumulation of fluoride toxicity in plants and its effects on plants and techniques for its removal. Advanced Treatment Technologies for Fluoride Removal in Water: Water Purification 2024:271-290. Doi: 10.1007/978-3-031-38845-3_15
- [42] Datta JK, Maitra A, Mondal NK, Banerjee A. Studies on the impact of fluoride toxicity on germination and seedling growth of gram seed (*Cicer arietinum* L. cv. Anuradha). J Stress Physiol Biochem 2012;8:194-202
- [43] Rubio-Casal AE, Castillo JM, Luque CJ, Figueroa ME. Influence of salinity on germination and seed viability of two primary colonizers of Mediterranean salt pans. J Arid Environ 2003;53:145-154. Doi: 10.1006/jare.2002.1042
- [44] Sabal D, Khan TL, Saxena R. Effect of sodium fluoride on cluster bean (*Cyamopsis tetragonoloba*) seed germination and seedling growth. Fluoride 2006;39(3):228
- [45] Singh M, Verma KV. Influence of fluoride-contaminated irrigation water on physiological responses of poplar seedlings (*Populus deltoides* L. clone-S7C15). Fluoride 2013;46(2):83-9
- [46] Gulzar S. Seed germination of a halophytic grass *Aeluropus lagopoides*. Ann Bot 2001;87(3):319-324. Doi: 10.1006/anbo.2000.1336
- [47] Mishra A, Choudhuri MA. Monitoring of phytotoxicity of lead and mercury from germination and early seedling growth indices in two rice cultivars. Water Air Soil Pollut 1999;114(3):339-346. Doi: 10.1023/A:1005135629433
- [48] Datta JK, Maitra A, Mondal NK, Banerjee A. Studies on the impact of fluoride toxicity on germination and seedling growth of gram seed (*Cicer arietinum* L. cv. Anuradha). J Stress Physiol Biochem 2012;8(1):194-202
- [49] Baunthiyal M, Fluoride SR. Physiological and biochemical responses of plants under fluoride stress: an overview. Fluoride 2014;47(4):287-293. Doi: 10.5555/20143401446

- [50] Finch-Savage W, Phytologist GLN. Seed dormancy and the control of germination. New Phytol 2006;171:501-523
- [51] Montagnolli RN, Lopes PRM, Cruz JM, Claro EMT, Quiterio GM, Bidoia ED, et al. The effects of fluoride based fire-fighting foams on soil microbiota activity and plant growth during natural attenuation of perfluorinated compounds. Environ Toxicol Pharmacol 2017;50:119-127. Doi: 10.1016/j.etap.2017.01.017
- [52] Cai H, Dong Y, Peng C, Li Y, Xu W, Li D, et al. Fluoride-induced responses in the chlorophyll content and the antioxidant system in tea leaves (*Camellia sinensis*). Fluoride 2017;50(1):59. Doi: 10.5555/20173289317
- [53] Ghassemi-Golezani K, Farhangi-Abriz S. Biochar alleviates fluoride toxicity and oxidative stress in safflower (*Carthamus tinctorius* L.) seedlings. Chemosphere 2019;223:406-415. Doi: 10.1016/j.chemosphere.2019.02.087
- [54] Sharma R, Kaur R. Insights into fluoride-induced oxidative stress and antioxidant defences in plants. Acta Physiol Plant 2018;40(10):181. Doi: 10.1007/s11738-018-2754-0
- [55] Karolewski P, Siepak J, Gramowska H. Response of Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and Douglas fir (Pseudotsuga menziesii) needles to environment pollution with fluorine compounds. Dendrobiology 2000:45
- [56] Kumar KA, Varaprasad P, Rao AVB. Effect of fluoride on catalase, guaiacol peroxidase and ascorbate oxidase activities in two verities of mulberry leaves (*Morus alba* L.). Earth Sci Res J 2009;1(2):69-73
- [57] Scandalios JG. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defences. Braz J Med Biol Res 2005;38(7):995-1014. Doi: 10.1590/S0100-879X2005000700003
- [58] Santiago-Rosario LY, Harms KE, Elderd BD, Hart PB, Dassanayake M. No escape: The influence of substrate sodium on plant growth and tissue sodium responses. Ecol Evol 2021;11(20):14231-14249. Doi: 10.1002/ece3.8138
- [59] Wang T, Amee M, Wang G, Xie Y, Hu T, Xu H, et al. FaHSP17.8-CII orchestrates lead tolerance and accumulation in shoots via enhancing antioxidant enzymatic response and PSII activity in tall fescue. Ecotoxicol Environ Saf 2021;223:112568. Doi: 10.1016/j.ecoenv.2021.112568