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ABSTRACT 

Purpose: In view of the strong empirical dependence of traditional fetal brain 
Magnetic Resonance Imaging (MRI) disease detection models, the difficulty 
in integrating key environmental risk factors, such as fluoride exposure for 
comprehensive assessment, and the lack of public health applicability. 
Methods: This study innovatively proposes an algorithm-driven multimodal 
fusion model. First, a dual-channel input is constructed; then, dynamic gated 
fusion mechanism designed. Finally, an integrated classifier is used to achieve 
intelligent disease detection. 
Results: Experiments shows that the Dice coefficient of the lateral ventricle 
of the proposed model in the high fluoride exposure group reaches 0.95. In 
terms of disease detection, the area under the curve (AUC) value of the 
model in the high exposure group is 0.953. In the high-risk subgroup, the 
disease detection rate of the model reaches 89.5%, and warning time 
advanced to 3.0 weeks. In addition, the verification in cross-regional samples 
shows that the accuracy of the model in different populations reaches 91.4%. 
Conclusions: These results shows that while improving detection 
performance, the model has significant public health promotion value, and 
suitable for fetal health monitoring and early intervention under high 
environmental risks. 
Keywords: Public health; Disease detection; Fluoride exposure; Fetal brain 
MRI; Deep learning algorithm 
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INTRODUCTION 

 Fluoride (F) exposure is associated with problems 
in fetal brain development. The combined new data 
from the prospective Odense Children's Cohort with 
results from two previous birth cohort studies in 
Mexico and Canada to discussed the dose-effect 
relationship of F as developmental neurotoxicant at 
high exposures.1 The potential health problems 
caused by long-term exposure of high F 
concentrations, especially the effects on cognitive 
function in children from pregnancy to 18 years of age, 
and relationship between F exposure and children's 
cognitive outcomes.2 The dietary F intake during 
pregnancy was associated with neurodevelopment in 
young childrens in 103 mother-infant pairs in the 
Mexico City Progress Cohort. Higher concentration of 
F have been shown to be neurotoxic, the optimal 
exposure range may also pose risks to the developing 
brain.3 

 Fluoride exposure may lead to neuroadaptive 
changes in the central nervous system at the 
molecular and cellular levels associated with physical 
dependence by affecting neuroinflammation and 
neurodegeneration.4  The poisoning of F as a global 
public health problem, and the phenomenon that 
long-term excessive F exposure leads to F 
accumulation in the hippocampus and causes 
cognitive dysfunction.5 The association of F exposure 
from different sources and doses, and neurological 
diseases in children and adolescents studies shown to 
related, clinical evidence remains controversial.6 The 
maternal urinary iodine concentration affects the 
relationship between maternal urinary F and 
intelligence in boys and girls. In animal studies, the 
combination of intrauterineF exposure and low iodine 
has greater negative effects on offspring learning and 
memory than either alone, but this has not been 
studied in children7. 
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 Do et al.8 assessed the Australian population using 
the Wechsler Adult Intelligence Scale, version 4, to 
explore the potential effects of early F exposure on 
cognitive neurodevelopment in response to the 
ongoing debate on this issue and emphasized the 
need for high-quality scientific evidence. However, 
these approaches mostly focused on the single-aspect 
analysis and fail to fully integrate imaging features 
with environmental exposure risks. 

 To address the shortcomings of existing methods, 
some studies have attempted to incorporate 
physiological models and deep learning algorithms 
(DLA). To assess the main sources of groundwater 
contamination and non-carcinogenic risks of nitrate 
and F pollution to human health by using principal 
component analysis (PCA) and multi-layer perceptron 
artificial neural network.9 The effects of F exposure on 
pregnancy through a rat model, simulating the pre-
pregnancy and pregnancy exposure conditions in 
endemic areas to explore the potential changes of F 
on placenta. However, most approaches failed to 
design dynamic and adaptable fusion mechanism, and 
therefore failed to deeply characterize the specific role 
of environmental risks on brain development.10 

 Traditional fetal brain MRI disease detection 
models mostly rely on empirical methods, which make 
it difficult to comprehensively consider environmental 
factors that affect fetal health, such as F exposure. 
These models usually lack the applicability from the 
public health perspective and cannot effectively assess 
the impact of environmental risk factors on fetal 
development. Therefore, how to integrate image 
features with environmental exposure information to 
achieve more accurate disease prediction has become 
an important direction for current research. 

 This article proposes an algorithm-driven dynamic 
fusion model, which uses a dual-channel input 
structure to extract fetal brain image features using an 

improved deep learning network and quantify F 
exposure risk based on the physiologically based 
pharmacokinetic (PBPK) model. The innovation lies in 
the introduction of a dynamic gated fusion 
mechanism, which adaptively weights and fuses image 
and environmental risk information according to the 
confidence of image features and exposure risk level, 
thereby breaking through the limitations of traditional 
models and improving the accuracy and stability of 
disease detection. This model is not only applicable to 
different exposure risk groups, but also provides a 
feasible solution for early identification and 
intervention of diseases related to environmental risk 
factors. 

 

MATERIAL AND METHODS 

Three-dimensional Segmentation Network of Fetal 
Brain MRI 

 In this study, three-dimensional (3D) segmentation 
of fetal brain MRI images is one of the key steps in the 
disease detection model. To this end, an improved 3D 
U-Net architecture is adopted, and its architecture is 
shown in Figure 1. 

 This architecture is optimized to accurately extract 
the features of key brain structures in three-
dimensional space, especially the subtle changes in 
the fetal brain images. Traditional 2D segmentation 
methods cannot fully utilize spatial information, while 
3D U-Net can effectively utilize the spatial context of 
the image to improve the accuracy and robustness of 
segmentation.11 In order to quantify the segmentation 
accuracy, it applied the Dice coefficient as the core 
evaluation indicator, as shown in equation 1. 

Dice(A,B) = 
2|A∩B|

|A|+|B|
 (1) 
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Figure 1. 3D U-Net network structure diagram 
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Table 1. The summary of the input indicators for the assessment  of F exposure risk 

Data type Indicator Unit Collection method 

Drinking water F Water-F mg/L Regional average measurement 

Urinary F Urine-F mg/L Mid-gestation lab sample 

Blood F Blood-F mg/L Late-gestation lab sample 

Exposure duration Exposure time Months Questionnaire-based survey 

Risk score Composite risk index (R) 0–10 scale Calculated via PBPK model 

 

 Among them, A  represents the predicted 
segmentation area, and B  represents the manually 
annotated real area. The core of this network 
structure is the encoder-decoder architecture, in 
which the encoder is used to extract high-level 
features of the image, and the decoder maps these 
features back to the original image size for accurate 
segmentation. In order to enhance the performance of 
the network, jump connections are added between 
the encoder and decoder, so that low-level detail 
features can be combined with high-level abstract 
features to further improve segmentation accuracy. In 
addition, spatial and channel attention mechanisms 
are integrated into the network so that the model can 
dynamically adjust the importance of features and 
automatically focus on those areas that have a greater 
impact on the segmentation results. In this way, the 
network can process complex fetal brain MRI images 
more efficiently, especially in the segmentation tasks 
of low-contrast areas and subtle lesions. 

Fluoride Exposure Risk Quantification Module 

 The potential impact of F exposure on fetal brain 
development has not received sufficient attention, 
and this module provides important auxiliary 
information for disease detection models by 
quantifying F exposure risks. First, the multiple data 
sources are integrated, including maternal biological 
samples, i.e., blood and urine F concentrations, F 
concentration data of water sources in the place of 
residence, and duration of exposure during pregnancy. 
These data are obtained through laboratory testing 
and environmental monitoring, covering samples with 
different exposure levels. Based on these data, the 
PBPK model is used to calculate the F exposure risk 
score for each individual. Table 1 summarized the  
data used for exposure risk assessment in this study. 

 The PBPK model can simulate the absorption, 
distribution, metabolism and excretion of F in the 
body, thereby providing an accurate exposure level 
assessment for each subject. In order to enhance the 
accuracy of the exposure score, the exposure duration 
and environmental factors, i.e., F water source are 
further combined to quantify the exposure risk of each 
individual. The following equation is used for the 
quantification. 

Rscore = α⋅Curine+β⋅Cblood+γ⋅Cwater (2) 

 Curine,Cblood,and Cwaterrepresents the concentrations 

of F in urine, blood, and water, respectively. α, β, and 
γ  are normalized weight coefficients determined 
based on the PBPK model. In this way, this module can 
provide a personalized exposure risk assessment for 
each fetus, thereby providing more accurate risk 
prediction data for subsequent disease detection.12 

 Key physiological parameters of the models, such 
as organ volumes and blood flow rates were 
referenced to population physiological data from 
pregnant women. Pharmacokinetic parameters, i.e., 
rate constants were calibrated and validated using 
fitted population data to ensure consistency between 
model predictions and actual biomonitoring data, such 
as urinary F levels. The final individual composite risk 
index was calculated based on the predicted target 
dose throughout pregnancy. 

Multimodal Dynamic Feature Fusion Mechanism 

 In this study, multimodal dynamic feature fusion 
mechanism is proposed. The core of this fusion 
mechanism is the dynamic gate fusion unit (GFU). This 
design enables the model to flexibly select the optimal 
feature combination according to the characteristics 
of the input data, as better adapt to needs of different 
exposure risk groups. In order to improve the 
efficiency of the fusion process, GFU adopts an 
adaptive weighting mechanism to adjust the weights 
of each channel feature in real time by calculating the 
correlation and mutual information between features, 
as shown in equation 3. 

Ffusion = σ(W1Fimg+W2Fexp+b) (3) 

 Fimg is the image feature; Fexp is the exposure risk 

feature; W1  and W2  are learnable weights; b  is the 
bias term; σ represents the activation function.13 The 
model can automatically adjust the focus under 
different risk environments to ensure the reasonable 
integration of image information and environmental 
exposure information. The proposed model in this 
study can not only make full use of the spatial features 
in the image information, but also effectively consider 
the potential impact of environmental risk factors on 
fetal brain development. 
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Figure 2. Disease classification and risk stratification module structure diagram 

 

Disease Classification and Risk Stratification 

 Disease classification and risk stratification are one 
of the core links of the model, aiming to provide 
scientific basis for subsequent intervention measures 
by accurately identifying the type and risk level of fetal 
brain diseases. To achieve this goal, multimodal 
information, especially imaging data and F exposure 
risk data combined and advanced integrated 
classification algorithm is used for disease prediction 
and risk stratification. The model structure is shown in 
figure 2. 

 The input of the model includes feature data from 
the imaging-exposure dual channel. The imaging data 
is extracted through a deep learning network to 
extract the spatial characteristics of key brain 
structures, while the exposure risk data calculated 
through PBPK model to obtain a personalized F 
exposure risk score. According to the PBPK model, the 
individual exposure risk can be expressed as given 
equation. 

Rexposure=
Cwater⋅texposure⋅Vbody

Kbody
 (4) 

 Where, Rexposure is the individual F exposure risk; 

Cwater  is the F concentration in the water source; 
texposure is the exposure duration; Vbody is the volume 

factor; Kbody is the metabolic constant. By fusing these 

two types of data, the comprehensive risk profile can 
be provided for each fetus. 

 The integrated classifier performs disease 
prediction after combining these two types of data. In 
order to improve the classification accuracy, the 
extreme gradient boosting (XGBoost) algorithm is 
used. As efficient integrated learning model, it can 
perform efficient feature selection and training in the 
multidimensional feature space. The loss function is  
shown in the equation 5. 

L(θ) = ∑  

n

i=1

[log(1+ exp(-yi⋅yî))]+λ∑  

m

j=1

θj
2 (5) 

 Among them, L(θ) is the loss function; yi  is the 

true label; yî  is the predicted output; λ  is the 

regularization coefficient; θj is the model parameter. 

This classifier can not only classify diseases, but also 
stratify the risks of the fetus on this basis. Specifically, 
the model distinguishes high-risk groups from low-risk 
groups based on the patient's exposure risk level, 
providing more accurate disease warning 
information.14 

 In terms of risk stratification, the model clearly 
divides high and low-risk groups by automatically 
grading the exposure score and combining the analysis 
results of imaging data. For example, the disease 
incidence rate of patients in the high-exposure group, 
such as blood F level>0.8 mg/L, water F 
concentration>1.5 mg/L is higher, and the model can 
identify this group in a timely manner and conduct key 
monitoring. Through this stratification, the model can 
provide accurate disease warning and early 
intervention measures for clinicians. 

 

RESULTS AND DISCUSSION 

Experimental Setting 

Study Population and Data 

 This multicenter retrospective analysis used data 
from pregnancy cohort collected between January 
2018 and December 2022 by six partner hospitals and 
local public health programs in three provinces in 
northern China. A total of 450 mother-fetus pairs were 
included. Inclusion criteria included singleton 
pregnancies, a well-defined brain MRI scan performed 
at approximately 24 weeks of pregnancy, both mid-
pregnancy urine and blood F measurements, and 
complete records of F concentrations in residential 
water sources during pregnancy. Exclusion criteria 
included known genetic disorders, intrauterine 
infection, and severe motion artifacts on the MRI 
images. 
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Table 2. Describing the key specifications used in the model development 

Category Key Component Configuration 
Hardware GPU NVIDIA Tesla V100 (32GB) 

Preprocessing 
Spatial normalization 1×1×1 mm³ isotropic resolution 

Intensity correction N4 bias correction + Z-score 

3D U-Net 
Loss function Dice + Weighted CE (3:1 ratio) 

Batch size 4 

Fusion module 
Gating unit Dual-channel attentive GFU 

Weighting strategy Risk-level adaptive 
 

Dataset 

 Source and Scale: This study collected fetal brain 
MRI data and related environmental and biological 
samples from multiple collaborating hospitals and 
public health programs. The sample size was 
estimated through statistical power analysis. Fluoride 
exposure stratification was based on the individual F 
exposure risk scores calculated from the PBPK model. 
The test set samples were divided into low, moderate 
and high-exposure groups. The following stratification 
thresholds were defined. 

 Low exposure group: R < 3.0 (corresponding to 
water F concentration < 0.7 mg/L, blood F 
concentration < 0.3 mg/L). Medium exposure group: 
3.0 ≤ R ≤ 6.5 (corresponding to water F concentration 
0.7-1.5 mg/L, blood F concentration 0.3-0.7 mg/L). 
High exposure group: R > 6.5 (corresponding to water 
F concentration > 1.5 mg/L, blood F concentration > 
0.7 mg/L). The test set contains 170 samples, divided 
into three groups, such as low exposure (n=68), 
medium exposure (n=68), and high exposure (n=34). 
This ensures balanced sample size across groups and 
facilitates performance comparison. 

 

Comparative Model and Implementation 

 In order to highlight the advantages of this model 
incorporating environmental risk factors, the following 
baseline models are set for comparison, i.e., Baseline-
1 (Group A)- single image model, Baseline-2 (Group B)- 
feature splicing model and present (Group C)- dynamic 
fusion model of this article. Table 2 summarizes the 
key implementation parameters, including hardware 
specifications, preprocessing standards, and fusion 
mechanisms. 

Segmentation Performance Experiment 

 This experiment aims to evaluate the impact of F 
exposure risk on the segmentation performance of key 
fetal brain structures. 60 stratified test samples 
(low/high/mixed exposure) are selected to compare 
three models, i.e., Group A (pure imaging model), 
Group B (feature splicing fusion), and Group C 
(dynamic gated fusion). Table 3 uses the Dice 
coefficient and Hausdorff distance (HD) as core 
indicators to quantify the differences in segmentation 
accuracy of the lateral ventricles and corpus callosum 
at different exposure levels, and explore the 
correlation between risk factors and anatomical 
structure recognition capabilities. 

 

Table 3: The segmentation performance measurement of different brain structures at different F exposure 

Brain 
structure 

Model 
group 

Exposure 
level 

Dice HD (mm) 
Exposure 

sensitivity gain 
(ΔDice) 

Inter-group 
p-value 

Lateral 
ventricles 

Group A 
Low 0.88±0.04 2.8±0.7 

-0.07 - 
High 0.81±0.06 3.9±1.1 

Group B 
Low 0.89±0.03 2.7±0.6 

-0.05 - 
High 0.84±0.05 3.4±0.9 

Group C 
Low 0.91±0.02 2.3±0.5 

0.04 <0.001 
High 0.95±0.02 1.8±0.4 

Corpus 
callosum 

Group A 
Low 0.79±0.05 4.2±1.0 

-0.09 - 
High 0.70±0.07 5.6±1.4 

Group B 
Low 0.80±0.04 4.0±0.9 

-0.06 - 
High 0.74±0.06 5.0±1.2 

Group C 
Low 0.82±0.03 3.7±0.8 

0.03 0.004 
High 0.85±0.03 3.1±0.6 

Note: Exposure-sensitive gain: Group C outperformed the low-exposure group in the high-exposure group (ΔDice>0), 
demonstrating the models adaptability to risk groups. The high-exposure group's lateral ventricle Dice increased to 
0.95 (95% CI: 0.94 - 0.96), statistically significant increase compared to Group A (p<0.001) (Wilcoxon test). 
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Figure 3. Disease detection evaluation 

 

 As can be seen from Table 3, taking the lateral 
ventricle as an example, the segmentation 
performance of Group A/B in the high F exposure 
group significantly deteriorates the Dice coefficient of 
the lateral ventricle of Group A decreases from 
0.88±0.04 in the low exposure group to 0.81±0.06 (Δ=-
0.07), and HD increases from 2.8±0.7mm to 
3.9±1.1mm. The model in this paper (Group C) 
reverses this trend through dynamic fusion 
mechanism. The Dice of the lateral ventricle in the 
high exposure group increases 0.95±0.02, the HD 
decreases 1.8±0.4mm; the exposure sensitivity gain 
ΔDice reaches +0.04. It is confirmed that the fusion 
exposure risk assessment can effectively suppress F 
interference and improve the robustness of 
anatomical structure recognition in high-risk 
populations. 

Disease Detection Evaluation Experiment 

 This experiment aims to assess the detection 
performance of fetal brain diseases under different F 
exposure levels. 170 stratified test samples 
(low/medium/high exposure groups) are applied to 
compare and analyze three models, such as single 
image model (Baseline-1), feature splicing model 
(Baseline-2) and the dynamic fusion model (present 
study). The three core indicators of accuracy, 
sensitivity and AUC are used to quantitatively verify 
the diagnostic performance of the model in different 
exposure risk environments, focusing on the detection 
stability of the high exposure group. The specific data 
are shown in Figure 3. 

 Figure 3a and b showed the ROC curves of the 
models under different exposure levels and 
comparison results of the three models in terms of 

accuracy and sensitivity. The experimental results 
showed that the dynamic fusion model proposed in 
this paper is significantly better than traditional 
approach in disease detection performance. Among 
the 170 test samples, the overall accuracy of the 
model reaches 92.3% (Baseline-1: 85.4%, Baseline-2: 
88.7%), and the sensitivity is 93.8% (Baseline-1: 82.1%, 
Baseline-2: 86.9%). As shown in Figure 3a, the AUC 
value of the model in the high exposure group reached 
0.953 (95% CI: 0.932 - 0.974), which was significantly 
better than its performance in the medium exposure 
group (AUC=0.906, 95% CI: 0.876 - 0.936; DeLong's 
test, p=0.013) and the low exposure group 
(AUC=0.877, 95% CI: 0.842 - 0.912; DeLong's test, 
p<0.001). The specificity at each exposure level is 
maintained above 87%, indicating that the model can 
effectively avoid misdiagnosis while ensuring the 
disease detection rate. These data confirm that the 
fusion of F exposure risk assessment significantly 
improves the detection efficiency of fetal brain 
diseases, especially in the high-risk populations. 

Risk Subgroup Experiment 

 This experiment focuses on the population with 
high F exposure risk (water F >1.5mg/L and blood F 
>0.8mg/L), and selects 38 confirmed encephalopathy 
cases from the test set as high-risk subgroup. By 
analyzing the dose-response relationship between 
exposure score and ventricular volume enlargement, 
Figure 4 and Table 4 assess the disease detection rate 
(HRDR) and warning lead time of different models for 
this subgroup, aiming to verify the early warning 
effectiveness of the fusion exposure risk assessment 
mechanism for high-risk populations. 
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Figure 4. High-risk subgroup analysis 

 

Table 4. The comparative performance of high-risk subgroup models 

Model HRDR (%) Sensitivity (%) Early warning lead time (weeks) p-value vs. present 
Baseline-1 71.1 76.3 1.8 ± 0.9 <0.001 
Baseline-2 78.9 82.6 2.3 ± 1.1 0.018 

Present study 89.5 94.7 3.0 ± 1.4 — 

 

 Fluoride exposure score is significantly positively 
correlated with the ventricular volume (Spearman 
ρ=0.58, p<0.001), and each increase of 1 unit in the 
exposure score leads to an increase of about 1.6 mL in 
the ventricular volume (Figure 4a). As shown in Table 
4, the disease detection rate (HRDR) of the proposed 
model in the high-risk subgroup reaches 89.5, an 
increase of 18.4% compared with Baseline-1. The 
sensitivity is 94.7%, and the median warning time 
window 3.0 weeks (Figure 4b), which is earlier than 
the baseline model. The results confirmed that the 
fusion exposure risk assessment mechanism 
significantly improves the early warning efficiency of 
high-risk populations. 

Model Generalization Ability Experiment 

 This experiment aims to evaluate the performance 
of different models for disease detection in high-risk 
populations. The data for this study is divided into two 
parts: 

 The Internal Training and Tuning Cohort consists of 
380 samples from three core partner hospitals (e.g., 
Province A). All data were acquired using the same 
Siemens Skyra 3T scanner and standardized T2-
weighted sequences for model training and initial 
validation. 

 The External Validation Cohort is used to test the 
model's generalization ability. This dataset consists of 
300 samples intentionally selected from sources that 
differ significantly from the Internal Cohort: 

 Geographic and Institutional Differences: From two 
local hospitals and public health program. 

 Scanning Equipment Differences: Scanners range 
from the General Electric (GE) Discovery MR750 3T to 
the Philips Achieva 1.5T. 

 Imaging Protocol Differences: Sequence 
parameters, such as TR/TE and voxel size exhibit 
natural variation. Demographic characteristics, i.e., 
mean maternal age and gestational age distribution 
differ slightly from the internal dataset.We tested 
model performance on external validation set, which 
differs significantly from the internal training set in 
scanner model, imaging parameters, and geographic 
origin. We analyzed the performance of each model 
across different exposure levels using metrics, such as 
accuracy, sensitivity, AUC, and HRDR, focusing on 
detection stability and early warning efficacy in the 
high-exposure group. Specific data are shown in Figure 
5. 

 The experimental results showed that the dynamic 
fusion model has excellent generalization ability in 
different regions and groups. Among 300 fetal brain 
MRI samples from urban and rural areas, the model 
has an accuracy of 91.4%, sensitivity of 93.2%, and an 
AUC of 0.95 on the test set, which are significantly 
better than Baseline-1 (accuracy 84.3%, sensitivity 
75.1%, AUC0.84) and Baseline-2 (accuracy 86.2%, 
sensitivity 79.4%, AUC0.87). In addition, the 
performance difference between the model in urban 
and rural samples are less than 2.3%, further proving 
its stability and reliability on different data sets. These 
results verify the wide applicability of the model and 
provide support for large-scale promotion. 
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Figure 5. Model generalization ability evaluation 

 

Significance of the Experimental Analysis 

 In this study, we proposed a fetal brain disease 
detection model based on the dynamic fusion 
mechanism and validated its performance through 
multiple experiments. Results showed that dynamic 
fusion model demonstrated significant advantages 
over traditional models in the high-F exposure group. 
Notably, this performance improvement may not only 
be due to algorithmic innovation but also relates to 
the biological mechanisms of F exposure. Existing 
research suggests that the F may induce subtle 
structural or signal changes in the brain by inducing 
neuroinflammation or affecting myelination. These 
changes, while difficult to detect visually, may be 
captured by deep learning models. Our dynamic gating 
mechanism, by incorporating exposure risk 
information, may enhance the model's sensitivity to 
these specific imaging features, thereby achieving 
more accurate detection in high-exposure groups. 

 In disease detection evaluation, our model 
achieved the highest AUC value in the high-exposure 
group, indicating that incorporating environmental 
risk factors can significantly improve screening efficacy 
in high-risk populations. However, the clinical 
application of any diagnostic tool requires careful 
assessment of the risk of false positives. False-positive 
results may lead to unnecessary anxiety and 
subsequent invasive testing for pregnant women, 
while false-negative results may delay intervention. 
Therefore, in future clinical translation, this model is 
more suitable as auxiliary screening tool, combined 
with expert assessment, and by setting a higher 
decision threshold to balance detection rate and false 
positive rate. The model's generalization ability was 
validated in heterogeneous dataset across regions and 

multiple scanning devices, with performance 
degradation below 1%, demonstrating its robustness. 
Finally, risk subgroup analysis confirmed the model's 
early warning value for high-risk populations. 

 It is important to note that this study still has 
several limitations. As an observational study, 
although exposure was quantified using PBPK model 
and some covariates were adjusted, the influence of 
other confounding factors, such as socioeconomic 
status, nutrition, and co-exposure to other toxicants 
cannot be fully excluded. Furthermore, the clinical 
integration of the model requires further exploration, 
including cost-effectiveness analysis and how risk 
scores can be translated into clinical intervention 
strategies. In summary, this study not only proposes 
an effective algorithmic framework but also provides 
new insights for exploring the imaging associations 
between environmental toxicants and brain 
development. Its clinical applicability awaits further 
validation in prospective cohorts. 

 
CONCLUSIONS AND FUTURE RESEARCH GAP 

 Fetal brain disease detection model based on the 
dynamic fusion mechanism proposed in this paper 
successfully combines imaging features with F 
exposure risk information, significantly improving the 
accuracy of disease detection and early warning 
capabilities. Through experimental verification, the 
model performs well in high-risk groups, especially in 
terms of disease detection rate and sensitivity, which 
is superior to traditional models, and can provide 
effective warning time in advance. In addition, the 
model has strong generalization ability, and the 
application effect in different regions and groups are 
stable. Despite this, this study still has specific 
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limitations, mainly in terms of sample size and 
diversity, and its performance needs to be further 
verified in a larger range and more complex 
environment in the future. Future research can further 
optimize the computational efficiency of the model 
and explore more potential associations between 
environmental factors and diseases to enhance the 
practical application value of the model, especially for 
its widespread promotion in the field of public health. 
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