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INTRODUCTION

Fluoride (F) exposure is associated with problems

Qiangian WU, Yuankai CHEN, Zhenqing LIU,
Fan WU, Hongsheng LIU*

ABSTRACT

Purpose: In view of the strong empirical dependence of traditional fetal brain
Magnetic Resonance Imaging (MRI) disease detection models, the difficulty
in integrating key environmental risk factors, such as fluoride exposure for
comprehensive assessment, and the lack of public health applicability.
Methods: This study innovatively proposes an algorithm-driven multimodal
fusion model. First, a dual-channel input is constructed; then, dynamic gated
fusion mechanism designed. Finally, an integrated classifier is used to achieve
intelligent disease detection.

Results: Experiments shows that the Dice coefficient of the lateral ventricle
of the proposed model in the high fluoride exposure group reaches 0.95. In
terms of disease detection, the area under the curve (AUC) value of the
model in the high exposure group is 0.953. In the high-risk subgroup, the
disease detection rate of the model reaches 89.5%, and warning time
advanced to 3.0 weeks. In addition, the verification in cross-regional samples
shows that the accuracy of the model in different populations reaches 91.4%.
Conclusions: These results shows that while improving detection
performance, the model has significant public health promotion value, and
suitable for fetal health monitoring and early intervention under high
environmental risks.

Keywords: Public health; Disease detection; Fluoride exposure; Fetal brain
MRI; Deep learning algorithm

Fluoride exposure may lead to neuroadaptive
changes in the central nervous system at the

in fetal brain development. The combined new data
from the prospective Odense Children's Cohort with
results from two previous birth cohort studies in
Mexico and Canada to discussed the dose-effect
relationship of F as developmental neurotoxicant at
high exposures.! The potential health problems
caused by long-term exposure of high F
concentrations, especially the effects on cognitive
function in children from pregnancy to 18 years of age,
and relationship between F exposure and children's
cognitive outcomes.? The dietary F intake during
pregnancy was associated with neurodevelopment in
young childrens in 103 mother-infant pairs in the
Mexico City Progress Cohort. Higher concentration of
F have been shown to be neurotoxic, the optimal
exposure range may also pose risks to the developing
brain.?

molecular and cellular levels associated with physical
dependence by affecting neuroinflammation and
neurodegeneration.* The poisoning of F as a global
public health problem, and the phenomenon that
long-term excessive F exposure leads to F
accumulation in the hippocampus and causes
cognitive dysfunction.> The association of F exposure
from different sources and doses, and neurological
diseases in children and adolescents studies shown to
related, clinical evidence remains controversial.® The
maternal urinary iodine concentration affects the
relationship between maternal urinary F and
intelligence in boys and girls. In animal studies, the
combination of intrauterineF exposure and low iodine
has greater negative effects on offspring learning and
memory than either alone, but this has not been
studied in children’.
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Do et al.® assessed the Australian population using
the Wechsler Adult Intelligence Scale, version 4, to
explore the potential effects of early F exposure on
cognitive neurodevelopment in response to the
ongoing debate on this issue and emphasized the
need for high-quality scientific evidence. However,
these approaches mostly focused on the single-aspect
analysis and fail to fully integrate imaging features
with environmental exposure risks.

To address the shortcomings of existing methods,
some studies have attempted to incorporate
physiological models and deep learning algorithms
(DLA). To assess the main sources of groundwater
contamination and non-carcinogenic risks of nitrate
and F pollution to human health by using principal
component analysis (PCA) and multi-layer perceptron
artificial neural network.® The effects of F exposure on
pregnancy through a rat model, simulating the pre-
pregnancy and pregnancy exposure conditions in
endemic areas to explore the potential changes of F
on placenta. However, most approaches failed to
design dynamic and adaptable fusion mechanism, and
therefore failed to deeply characterize the specific role
of environmental risks on brain development.®

Traditional fetal brain MRI disease detection
models mostly rely on empirical methods, which make
it difficult to comprehensively consider environmental
factors that affect fetal health, such as F exposure.
These models usually lack the applicability from the
public health perspective and cannot effectively assess
the impact of environmental risk factors on fetal
development. Therefore, how to integrate image
features with environmental exposure information to
achieve more accurate disease prediction has become
an important direction for current research.

This article proposes an algorithm-driven dynamic
fusion model, which uses a dual-channel input
structure to extract fetal brain image features using an
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Figure 1. 3D U-Net network structure diagram

improved deep learning network and quantify F
exposure risk based on the physiologically based
pharmacokinetic (PBPK) model. The innovation lies in
the introduction of a dynamic gated fusion
mechanism, which adaptively weights and fuses image
and environmental risk information according to the
confidence of image features and exposure risk level,
thereby breaking through the limitations of traditional
models and improving the accuracy and stability of
disease detection. This model is not only applicable to
different exposure risk groups, but also provides a
feasible solution for early identification and
intervention of diseases related to environmental risk
factors.

MATERIAL AND METHODS

Three-dimensional Segmentation Network of Fetal
Brain MRI

In this study, three-dimensional (3D) segmentation
of fetal brain MRI images is one of the key steps in the
disease detection model. To this end, an improved 3D
U-Net architecture is adopted, and its architecture is
shown in Figure 1.

This architecture is optimized to accurately extract
the features of key brain structures in three-
dimensional space, especially the subtle changes in
the fetal brain images. Traditional 2D segmentation
methods cannot fully utilize spatial information, while
3D U-Net can effectively utilize the spatial context of
the image to improve the accuracy and robustness of
segmentation.'? In order to quantify the segmentation
accuracy, it applied the Dice coefficient as the core
evaluation indicator, as shown in equation 1.
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Table 1. The summary of the input indicators for the assessment of F exposure risk

Data type Indicator Unit Collection method
Drinking water F Water-F mg/L Regional average measurement
Urinary F Urine-F mg/L Mid-gestation lab sample
Blood F Blood-F mg/L Late-gestation lab sample
Exposure duration Exposure time Months Questionnaire-based survey

Risk score Composite risk index (R)

0-10 scale

Calculated via PBPK model

Among them, A represents the predicted
segmentation area, and B represents the manually
annotated real area. The core of this network
structure is the encoder-decoder architecture, in
which the encoder is used to extract high-level
features of the image, and the decoder maps these
features back to the original image size for accurate
segmentation. In order to enhance the performance of
the network, jump connections are added between
the encoder and decoder, so that low-level detail
features can be combined with high-level abstract
features to further improve segmentation accuracy. In
addition, spatial and channel attention mechanisms
are integrated into the network so that the model can
dynamically adjust the importance of features and
automatically focus on those areas that have a greater
impact on the segmentation results. In this way, the
network can process complex fetal brain MRI images
more efficiently, especially in the segmentation tasks
of low-contrast areas and subtle lesions.

Fluoride Exposure Risk Quantification Module

The potential impact of F exposure on fetal brain
development has not received sufficient attention,
and this module provides important auxiliary
information for disease detection models by
quantifying F exposure risks. First, the multiple data
sources are integrated, including maternal biological
samples, i.e., blood and urine F concentrations, F
concentration data of water sources in the place of
residence, and duration of exposure during pregnancy.
These data are obtained through laboratory testing
and environmental monitoring, covering samples with
different exposure levels. Based on these data, the
PBPK model is used to calculate the F exposure risk
score for each individual. Table 1 summarized the
data used for exposure risk assessment in this study.

The PBPK model can simulate the absorption,
distribution, metabolism and excretion of F in the
body, thereby providing an accurate exposure level
assessment for each subject. In order to enhance the
accuracy of the exposure score, the exposure duration
and environmental factors, i.e., F water source are
further combined to quantify the exposure risk of each
individual. The following equation is used for the
guantification.

Rscore = 0t Curine+6' Chiood*V: Cuater (2)

Curine, Chiood,and Cyqare,represents the concentrations
of F in urine, blood, and water, respectively. a, 8, and
y are normalized weight coefficients determined
based on the PBPK model. In this way, this module can
provide a personalized exposure risk assessment for
each fetus, thereby providing more accurate risk
prediction data for subsequent disease detection.*?

Key physiological parameters of the models, such
as organ volumes and blood flow rates were
referenced to population physiological data from
pregnant women. Pharmacokinetic parameters, i.e.,
rate constants were calibrated and validated using
fitted population data to ensure consistency between
model predictions and actual biomonitoring data, such
as urinary F levels. The final individual composite risk
index was calculated based on the predicted target
dose throughout pregnancy.

Multimodal Dynamic Feature Fusion Mechanism

In this study, multimodal dynamic feature fusion
mechanism is proposed. The core of this fusion
mechanism is the dynamic gate fusion unit (GFU). This
design enables the model to flexibly select the optimal
feature combination according to the characteristics
of the input data, as better adapt to needs of different
exposure risk groups. In order to improve the
efficiency of the fusion process, GFU adopts an
adaptive weighting mechanism to adjust the weights
of each channel feature in real time by calculating the
correlation and mutual information between features,
as shown in equation 3.

Ffusion = O(WlFfmg+W2F€Xp+b) (3)

Fimg is the image feature; F,,, is the exposure risk
feature; W, and W, are learnable weights; b is the
bias term; o represents the activation function.’® The
model can automatically adjust the focus under
different risk environments to ensure the reasonable
integration of image information and environmental
exposure information. The proposed model in this
study can not only make full use of the spatial features
in the image information, but also effectively consider
the potential impact of environmental risk factors on
fetal brain development.
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Figure 2. Disease classification and risk stratification module structure diagram

Disease Classification and Risk Stratification

Disease classification and risk stratification are one
of the core links of the model, aiming to provide
scientific basis for subsequent intervention measures
by accurately identifying the type and risk level of fetal
brain diseases. To achieve this goal, multimodal
information, especially imaging data and F exposure
risk data combined and advanced integrated
classification algorithm is used for disease prediction
and risk stratification. The model structure is shown in
figure 2.

The input of the model includes feature data from
the imaging-exposure dual channel. The imaging data
is extracted through a deep learning network to
extract the spatial characteristics of key brain
structures, while the exposure risk data calculated
through PBPK model to obtain a personalized F
exposure risk score. According to the PBPK model, the
individual exposure risk can be expressed as given
equation.

Cuater' texposure : Vbody
Rexposure= K (4)
body

Where, R.yposure is the individual F exposure risk;
Cyater IS the F concentration in the water source;
texposure 1S the exposure duration; Vi, is the volume
factor; Kjoq, is the metabolic constant. By fusing these
two types of data, the comprehensive risk profile can
be provided for each fetus.

The integrated classifier performs disease
prediction after combining these two types of data. In
order to improve the classification accuracy, the
extreme gradient boosting (XGBoost) algorithm is
used. As efficient integrated learning model, it can
perform efficient feature selection and training in the
multidimensional feature space. The loss function is
shown in the equation 5.

L@)= D fosire(y ) ) 5 )
i=1 J=1

Among them, L(8)is the loss function; y, is the
true label; )’/7 is the predicted output; A is the
regularization coefficient; 9;is the model parameter.
This classifier can not only classify diseases, but also
stratify the risks of the fetus on this basis. Specifically,
the model distinguishes high-risk groups from low-risk
groups based on the patient's exposure risk level,
providing more accurate disease  warning
information.'*

In terms of risk stratification, the model clearly
divides high and low-risk groups by automatically
grading the exposure score and combining the analysis
results of imaging data. For example, the disease
incidence rate of patients in the high-exposure group,
such as blood F level>0.8 mg/L, water F
concentration>1.5 mg/L is higher, and the model can
identify this group in a timely manner and conduct key
monitoring. Through this stratification, the model can
provide accurate disease warning and early
intervention measures for clinicians.

RESULTS AND DISCUSSION
Experimental Setting
Study Population and Data

This multicenter retrospective analysis used data
from pregnancy cohort collected between January
2018 and December 2022 by six partner hospitals and
local public health programs in three provinces in
northern China. A total of 450 mother-fetus pairs were
included. Inclusion criteria included singleton
pregnancies, a well-defined brain MRI scan performed
at approximately 24 weeks of pregnancy, both mid-
pregnancy urine and blood F measurements, and
complete records of F concentrations in residential
water sources during pregnancy. Exclusion criteria
included known genetic disorders, intrauterine
infection, and severe motion artifacts on the MRI
images.
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Table 2. Describing the key specifications used in the model development

Category

Key Component

Configuration

Hardware GPU

NVIDIA Tesla V100 (32GB)

Spatial normalization

1x1x1 mm? isotropic resolution

Preprocessing

Intensity correction

N4 bias correction + Z-score

Loss function

Dice + Weighted CE (3:1 ratio)

3D U-Net :
Batch size

4

Gating unit

Dual-channel attentive GFU

Fusion module L
Weighting strategy

Risk-level adaptive

Dataset

Source and Scale: This study collected fetal brain
MRI data and related environmental and biological
samples from multiple collaborating hospitals and
public health programs. The sample size was
estimated through statistical power analysis. Fluoride
exposure stratification was based on the individual F
exposure risk scores calculated from the PBPK model.
The test set samples were divided into low, moderate
and high-exposure groups. The following stratification
thresholds were defined.

Low exposure group: R < 3.0 (corresponding to
water F concentration < 0.7 mg/L, blood F
concentration < 0.3 mg/L). Medium exposure group:
3.0 £ R £ 6.5 (corresponding to water F concentration
0.7-1.5 mg/L, blood F concentration 0.3-0.7 mg/L).
High exposure group: R > 6.5 (corresponding to water
F concentration > 1.5 mg/L, blood F concentration >
0.7 mg/L). The test set contains 170 samples, divided
into three groups, such as low exposure (n=68),
medium exposure (n=68), and high exposure (n=34).
This ensures balanced sample size across groups and
facilitates performance comparison.

Comparative Model and Implementation

In order to highlight the advantages of this model
incorporating environmental risk factors, the following
baseline models are set for comparison, i.e., Baseline-
1 (Group A)- single image model, Baseline-2 (Group B)-
feature splicing model and present (Group C)- dynamic
fusion model of this article. Table 2 summarizes the
key implementation parameters, including hardware
specifications, preprocessing standards, and fusion
mechanisms.

Segmentation Performance Experiment

This experiment aims to evaluate the impact of F
exposure risk on the segmentation performance of key
fetal brain structures. 60 stratified test samples
(low/high/mixed exposure) are selected to compare
three models, i.e., Group A (pure imaging model),
Group B (feature splicing fusion), and Group C
(dynamic gated fusion). Table 3 uses the Dice
coefficient and Hausdorff distance (HD) as core
indicators to quantify the differences in segmentation
accuracy of the lateral ventricles and corpus callosum
at different exposure levels, and explore the
correlation between risk factors and anatomical
structure recognition capabilities.

Table 3: The segmentation performance measurement of different brain structures at different F exposure

. Exposure
Brain Model Exposure . p . . Inter-group
structure rou level Dice HD (mm)  sensitivity gain value
group (ADice) P
Low 0.88+0.04 2.810.7
Group A . -0.07 -
High 0.81+0.06 3.9+1.1
L 0.89+0.03 2.7+0.6
Latgral Group B (,)W -0.05 -
ventricles High 0.84+0.05 3.4+0.9
Low 0.91+0.02 2.3+0.5
Group C . 0.04 <0.001
High 0.95+0.02 1.810.4
Low 0.79+0.05 4.2+1.0
Group A . -0.09 -
High 0.70+0.07 5.6x1.4
L 0.80+0.04 4.0+0.9
Corpus Group B ow -0.06 -
callosum High 0.74+0.06 5.0+1.2
Low 0.82+0.03 3.7+£0.8
Group C . 0.03 0.004
High 0.85+0.03 3.1+0.6

Note: Exposure-sensitive gain: Group C outperformed the low-exposure group in the high-exposure group (ADice>0),
demonstrating the models adaptability to risk groups. The high-exposure group's lateral ventricle Dice increased to
0.95 (95% Cl: 0.94 - 0.96), statistically significant increase compared to Group A (p<0.001) (Wilcoxon test).
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Figure 3. Disease detection evaluation

As can be seen from Table 3, taking the lateral
ventricle as an example, the segmentation
performance of Group A/B in the high F exposure
group significantly deteriorates the Dice coefficient of
the lateral ventricle of Group A decreases from
0.88+0.04 in the low exposure group to 0.81+0.06 (A=-
0.07), and HD increases from 2.84#0.7mm to
3.9+1.1mm. The model in this paper (Group C)
reverses this trend through dynamic fusion
mechanism. The Dice of the lateral ventricle in the
high exposure group increases 0.95+0.02, the HD
decreases 1.8+0.4mm; the exposure sensitivity gain
ADice reaches +0.04. It is confirmed that the fusion
exposure risk assessment can effectively suppress F
interference  and improve the robustness of
anatomical structure recognition in  high-risk
populations.

Disease Detection Evaluation Experiment

This experiment aims to assess the detection
performance of fetal brain diseases under different F
exposure levels. 170 stratified test samples
(low/medium/high exposure groups) are applied to
compare and analyze three models, such as single
image model (Baseline-1), feature splicing model
(Baseline-2) and the dynamic fusion model (present
study). The three core indicators of accuracy,
sensitivity and AUC are used to quantitatively verify
the diagnostic performance of the model in different
exposure risk environments, focusing on the detection
stability of the high exposure group. The specific data
are shown in Figure 3.

Figure 3a and b showed the ROC curves of the
models under different exposure levels and
comparison results of the three models in terms of

(b)Model Performance Comparison

[ Accuracy .
[ sensitivity

100

Performance (%)

Baseline-1 Baseline-2 Ours
Model

accuracy and sensitivity. The experimental results
showed that the dynamic fusion model proposed in
this paper is significantly better than traditional
approach in disease detection performance. Among
the 170 test samples, the overall accuracy of the
model reaches 92.3% (Baseline-1: 85.4%, Baseline-2:
88.7%), and the sensitivity is 93.8% (Baseline-1: 82.1%,
Baseline-2: 86.9%). As shown in Figure 3a, the AUC
value of the model in the high exposure group reached
0.953 (95% Cl: 0.932 - 0.974), which was significantly
better than its performance in the medium exposure
group (AUC=0.906, 95% ClI: 0.876 - 0.936; Delong's
test, p=0.013) and the low exposure group
(AUC=0.877, 95% Cl: 0.842 - 0.912; Delong's test,
p<0.001). The specificity at each exposure level is
maintained above 87%, indicating that the model can
effectively avoid misdiagnosis while ensuring the
disease detection rate. These data confirm that the
fusion of F exposure risk assessment significantly
improves the detection efficiency of fetal brain
diseases, especially in the high-risk populations.

Risk Subgroup Experiment

This experiment focuses on the population with
high F exposure risk (water F >1.5mg/L and blood F
>0.8mg/L), and selects 38 confirmed encephalopathy
cases from the test set as high-risk subgroup. By
analyzing the dose-response relationship between
exposure score and ventricular volume enlargement,
Figure 4 and Table 4 assess the disease detection rate
(HRDR) and warning lead time of different models for
this subgroup, aiming to verify the early warning
effectiveness of the fusion exposure risk assessment
mechanism for high-risk populations.
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(a)Exposure vs. Ventricle Enlargement (p=0.58, p<0.001)

(b)Model Early Warning Capability (n=38)
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Figure 4. High-risk subgroup analysis
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Table 4. The comparative performance of high-risk subgroup models

Model HRDR (%) Sensitivity (%) Early warning lead time (weeks) p-value vs. present
Baseline-1 71.1 76.3 1.8+09 <0.001
Baseline-2 78.9 82.6 23+1.1 0.018
Present study 89.5 94.7 3.0x1.4 —

Fluoride exposure score is significantly positively
correlated with the ventricular volume (Spearman
p=0.58, p<0.001), and each increase of 1 unit in the
exposure score leads to an increase of about 1.6 mL in
the ventricular volume (Figure 4a). As shown in Table
4, the disease detection rate (HRDR) of the proposed
model in the high-risk subgroup reaches 89.5, an
increase of 18.4% compared with Baseline-1. The
sensitivity is 94.7%, and the median warning time
window 3.0 weeks (Figure 4b), which is earlier than
the baseline model. The results confirmed that the
fusion exposure risk assessment mechanism
significantly improves the early warning efficiency of
high-risk populations.

Model Generalization Ability Experiment

This experiment aims to evaluate the performance
of different models for disease detection in high-risk
populations. The data for this study is divided into two
parts:

The Internal Training and Tuning Cohort consists of
380 samples from three core partner hospitals (e.g.,
Province A). All data were acquired using the same
Siemens Skyra 3T scanner and standardized T2-
weighted sequences for model training and initial
validation.

The External Validation Cohort is used to test the
model's generalization ability. This dataset consists of
300 samples intentionally selected from sources that
differ significantly from the Internal Cohort:

Geographic and Institutional Differences: From two
local hospitals and public health program.

Scanning Equipment Differences: Scanners range
from the General Electric (GE) Discovery MR750 3T to
the Philips Achieva 1.5T.

Imaging Protocol  Differences: Sequence
parameters, such as TR/TE and voxel size exhibit
natural variation. Demographic characteristics, i.e.,
mean maternal age and gestational age distribution
differ slightly from the internal dataset.We tested
model performance on external validation set, which
differs significantly from the internal training set in
scanner model, imaging parameters, and geographic
origin. We analyzed the performance of each model
across different exposure levels using metrics, such as
accuracy, sensitivity, AUC, and HRDR, focusing on
detection stability and early warning efficacy in the
high-exposure group. Specific data are shown in Figure
5.

The experimental results showed that the dynamic
fusion model has excellent generalization ability in
different regions and groups. Among 300 fetal brain
MRI samples from urban and rural areas, the model
has an accuracy of 91.4%, sensitivity of 93.2%, and an
AUC of 0.95 on the test set, which are significantly
better than Baseline-1 (accuracy 84.3%, sensitivity
75.1%, AUCO0.84) and Baseline-2 (accuracy 86.2%,
sensitivity 79.4%, AUCO0.87). In addition, the
performance difference between the model in urban
and rural samples are less than 2.3%, further proving
its stability and reliability on different data sets. These
results verify the wide applicability of the model and
provide support for large-scale promotion.
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Figure 5. Model generalization ability evaluation

Significance of the Experimental Analysis

In this study, we proposed a fetal brain disease
detection model based on the dynamic fusion
mechanism and validated its performance through
multiple experiments. Results showed that dynamic
fusion model demonstrated significant advantages
over traditional models in the high-F exposure group.
Notably, this performance improvement may not only
be due to algorithmic innovation but also relates to
the biological mechanisms of F exposure. Existing
research suggests that the F may induce subtle
structural or signal changes in the brain by inducing
neuroinflammation or affecting myelination. These
changes, while difficult to detect visually, may be
captured by deep learning models. Our dynamic gating
mechanism, by incorporating exposure risk
information, may enhance the model's sensitivity to
these specific imaging features, thereby achieving
more accurate detection in high-exposure groups.

In disease detection evaluation, our model
achieved the highest AUC value in the high-exposure
group, indicating that incorporating environmental
risk factors can significantly improve screening efficacy
in high-risk populations. However, the clinical
application of any diagnostic tool requires careful
assessment of the risk of false positives. False-positive
results may lead to unnecessary anxiety and
subsequent invasive testing for pregnant women,
while false-negative results may delay intervention.
Therefore, in future clinical translation, this model is
more suitable as auxiliary screening tool, combined
with expert assessment, and by setting a higher
decision threshold to balance detection rate and false
positive rate. The model's generalization ability was
validated in heterogeneous dataset across regions and

multiple scanning devices, with performance
degradation below 1%, demonstrating its robustness.
Finally, risk subgroup analysis confirmed the model's
early warning value for high-risk populations.

It is important to note that this study still has
several limitations. As an observational study,
although exposure was quantified using PBPK model
and some covariates were adjusted, the influence of
other confounding factors, such as socioeconomic
status, nutrition, and co-exposure to other toxicants
cannot be fully excluded. Furthermore, the clinical
integration of the model requires further exploration,
including cost-effectiveness analysis and how risk
scores can be translated into clinical intervention
strategies. In summary, this study not only proposes
an effective algorithmic framework but also provides
new insights for exploring the imaging associations
between environmental toxicants and brain
development. Its clinical applicability awaits further
validation in prospective cohorts.

CONCLUSIONS AND FUTURE RESEARCH GAP

Fetal brain disease detection model based on the
dynamic fusion mechanism proposed in this paper
successfully combines imaging features with F
exposure risk information, significantly improving the
accuracy of disease detection and early warning
capabilities. Through experimental verification, the
model performs well in high-risk groups, especially in
terms of disease detection rate and sensitivity, which
is superior to traditional models, and can provide
effective warning time in advance. In addition, the
model has strong generalization ability, and the
application effect in different regions and groups are
stable. Despite this, this study still has specific
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limitations, mainly in terms of sample size and
diversity, and its performance needs to be further
verified in a larger range and more complex
environment in the future. Future research can further
optimize the computational efficiency of the model
and explore more potential associations between
environmental factors and diseases to enhance the
practical application value of the model, especially for
its widespread promotion in the field of public health.
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