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ABSTRACT 

Purpose: To address the issues of inadequate leakage risk warnings due to the 
extensive use of fluoride in university laboratories and the limitations of 
traditional detection methods. 

Methods: This study developed an artificial intelligence (AI) and information 
technology-based real-time fluoride monitoring and intelligent early warning 
system. The system employs a fluoride ion-selective electrode (FISE) array 
along with a temperature/humidity sensor to form the perception layer. Real-
time data is transmitted wirelessly via LoRa technology to the STM32 
microcontroller terminal. 

Results: The data is uploaded to the cloud database via a 4G module, a multi-
sensor data fusion algorithm is applied to eliminate environmental 
interference. A self-developed LSTM-Attention time-series prediction model is 
deployed to enable intelligent early warning before concentrations exceed the 
threshold. Additionally, a visual monitoring platform and mobile alarm 
notifications are implemented. Test results demonstrate that the system 
achieves a detection limit of 0.1 mg/L and a response time of ≤20 seconds. 

Conclusions: The system effectively addresses the challenge of real-time 
monitoring of fluoride hazards in laboratories and offers innovative technical 
support for hazardous chemical safety management. 
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INTRODUCTION 

 The monitoring of fluoride (F) pollution and the 
assessment of its environmental health risks exhibit a 
multi-dimensional development trend, encompassing 
urban pollution source control, drinking water safety 
evaluation, and toxicological mechanism analysis. 
National and International research scholars have 
systematically explored F environmental behavior and 
health impact through innovative monitoring 
approaches and risk assessment models, providing a 
scientific basis for pollution prevention and control. The 
approaches for setting up F content monitoring in 
urban fixed pollution sources, considering 
meteorological factors and determining the impact of 
wind direction and pollution coefficient on the polluted 

regions when F escapes, combining the low-altitude 
meteorological characteristics to determine the 
number of monitoring aspects and completing the 
setting of monitoring factors.1 The collection of 7488 
drinking water samples from drinking water monitoring 
areas fixed in 12 leagues and cities in Inner Mongolia, 
conducted during the arid and semiarid seasons, and 
applied the "four-step method" health risk assessment 
model of the United States Environmental Protection 
Agency (USEPA) to conduct health risk assessment 
through oral intake.2 

 Fluoride data was collected on drinking water from 
Luoyang city, China through National Drinking Water 
Quality and Hygiene Monitoring Information System, 
and applied the rank sum test to compare the 
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differences in F concentrations between different 
years, counties, water samples and sampling types-
periods, and water resources, and assessed the health 
risks caused by F through drinking water based on the 
four-step method.3 The analytical results of F in rural 
drinking water in Jinzhong City from 2018 to 2022, 
conducted non-carcinogenic health risk assessment.4 

 The result findings of 62 groundwater wells in 
Xuzhou city, China in the past 10 years. They conducted 
health risk assessment, observed the spatiotemporal 
variations of groundwater F in the Xuzhou area and the 
size of the non-carcinogenic risk index.5 Johnston and 
Strobel6demonstrated the role of F at chemical, cellular 
and multisystem levels, and how organisms defend 
against F. The synthesis and characterization of a new 
terpyridine-based nitrosyl ruthenium complex 
[Ru(Cl)2NO(terpy-C6H4OH)] 1·Ru-OH.7 The deliberate 
addition of precise doses of F to water supplies is a 
public health measure aimed at promoting dental 
health.8The data analysis of groundwater quality and F 
occurrence obtained from the Korean groundwater 
monitoring network.9 F concentrations observed 55% in 
groundwater samples in Yavtmal county, Maharashtra, 
India, exceeded the permissible limit. It developed a 
comprehensive research framework for F pollution 
from monitoring technology optimization, exposure 
pathway analysis, and health effect assessment.10 

 University laboratories frequently use more toxic 
F,i.e., hydrofluoric acid. Traditional manual testing 
requires sampling and testing, which takes more time 
and cannot capture immediate leaks, leading to various 
severe burns and environmental pollution issues. The 
closed space and densely populated laboratories 
exponentially magnify the consequences of leaks. 
Existing monitoring equipment generally has defects, 
such as high false alarm rates and slow responses, 
making it challenging to meet real-time risk 
management requirements. 

 The present study combines F ion-selective 
electrode arrays with low-power IoT transmission, 
dynamically compensates for observation errors 
through multi-source environmental parameters, and 
introduces a deep learning time series prediction model 
to analyse concentration change trends, breaking 
through the limitations of passive threshold alarms. The 
collaborative design of the mobile terminal and the 
visualisation platform achieves seamless interaction 
from data collection to emergency response, providing 
active defence measures for laboratory safety 
management. 

 The system has built a complete monitoring 
architecture covering the perception layer to the 
application layer, significantly improving the timeliness 
of F risk identification. The innovative prediction model 
advances the warning window  before the leak occurs, 
effectively avoiding accident escalation. It has been 
proven to be adaptable to complex environments, and 

its technical route provides reusable solutions for the 
field of hazardous chemicals supervision, promoting 
the transformation of laboratory safety management 
from emergency response to pre-emptive prevention. 

 The present article integrate the intelligent 
monitoring and cross-scale risk assessment to promote 
the formulation of precision environmental governance 
and public health intervention strategies for 
ecofriendly environment. 

 

MATERIAL AND METHODS 

System architecture 

 A F ion-selective electrode (FISE) sensor array (3-
node redundant design per area) and high-precision 
temperature and humidity sensor are applied at the 
laboratory monitoring scale. FISE outputs a voltage 
signal every 60 sec (range ±500mV, resolution 0.1mV), 
which is collected in real time by the ADC module of the 
STM32F407ZGT6 microcontroller and synchronously 
receives temperature and humidity compensation data 
(DHT22 sensor, accuracy ±2%RH). After the raw data is 
denoised by Kalman filtering, the STM32 calls the 
dynamic threshold algorithm to determine whether to 
trigger immediate transmission. If the Flevel exceeds 
the safety threshold (1.0 mg/L) or the fluctuation rate 
is greater than 15%, the LoRa wireless transmission 
(frequency band 868 MHz, transmission power 20 dBm) 
is immediately started, otherwise, compressed data 
packets are sent to the cloud via the 4G module 
(SIM7600CE) at 10 min intervals. The cloud receives 
data streams based on the Kafka message queue, stores 
them in the time series database (InfluxDB), and 
performs multi-sensor fusion. First, the FISE voltage 
value is temperature compensated, and then the F level 
is converted (Nernst equation slope calibration). The 
fused data is input into the LSTM-attention prediction 
model (TensorFlow Serving deployment, input window 
60 sec, output concentration in the next 30 sec). If the 
predicted value exceeds the threshold, a WeChat/SMS 
alarm is immediately triggered (Tencent Cloud API call) 
and the leak location is marked on the map interface 
(Echarts visualization). All device status is 
bidirectionally monitored through MQTT protocol to 
achieve remote diagnosis and dynamic adjustment of 
the sampling frequency. Figure 1 shows the system 
architecture of this article. 

Outline of hardware 

 The PF-202 F ion selective electrode (FISE) is the 
core sensing unit. It’s ion exchange membrane 
response time is 0.3 sec, and coupled with a low-noise 
constant voltage source circuit (output drift ±0.1 mV). 
The original electrode signal is amplified by 100 times 
gain (bandwidth 1 kHz) through the AD623 
instrumentation amplifier and input into a 24-bit Σ-Δ 
ADC (ADS1256) for digitisation at sampling rate of 1 
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kHz, with an effective resolution of 0.01 mV. 
Environmental compensation is achieved by the 
Sensirion SHT35 temperature and humidity sensor, 
which synchronously collects temperature (±0.2℃ 
accuracy) and humidity (±1.5%RH accuracy) every 200 
ms through the I²C interface, and the original data is 
packaged into a 32-byte frame format and transmitted 
via the SPI bus [11]. 

 The STM32F407ZGT6 microcontroller builds a 
three-layer hardware pipeline, such as the FISE voltage 
(-500-500 mV range) and environmental parameters 
are synchronously analyzed through dual ADC channel 
polling (scanning cycle 5 ms), then, adaptive Kalman 
filtering (process noise covariance Q=0.01, observation 
noise R=0.001) is performed to eliminate signal jitter, 
finally, a transmission decision is generated based on 
the dynamic threshold algorithm (60-sec floating 
window, standard deviation coefficient K=2.5). Multi-
source data is written to 8 KB double-buffered SRAM 
through DMA. When the cache reaches 512 bytes, a 
hardware interrupt is triggered to start the 
communication protocol encapsulation (Modbus RTU 
frame structure). 

 The LoRa link uses the Semtech SX1278 module 
(868 MHz frequency band, spreading factor SF=10), and 
the transmission power is dynamically adjusted (14-20 
dBm, step 1 dBm). When the Flevel change rate is 
greater than 12%/secor greater than 1.2 mg/L, LoRa is 
activated to send a 64-byte data packet (air 
transmission time 148 ms). The 4G link establishes a 
TCP/IP connection through the Quectel EC200U 
module and sends compressed data packets every 10 
min (ZL77 algorithm compression rate 60%). The RSSI 
threshold controls dual-mode switching. LoRa is 
preferred when the signal strength is greater than 110 
dBm; otherwise, it switches to 4G (reconnection time 
<8 sec). Table 1 shows the specific key hardware 
characteristics. 

 

Figure 1. System architecture of the present study 

 

Table 1.The detailed list of key hardware parameters 

Category Parameter Typical value Limit value 

FISE sensor 
Response time (s) 0.30 0.50 

Measurement range (mg/L) 0.01-100 0.001-200 

ADC converter 
Effective resolution (mV) 0.01 0.05 

Sampling rate (Hz) 1000 2000 

STM32 processor 
ADC conversion delay (ms) 0.15 0.25 

SRAM capacity (Byte) 8192 - 

LoRa communication 
Receiver sensitivity (dBm) -148 -137 

Standby power consumption (mA) 0.20 0.35 

4G communication 
Data transfer rate (kbps) 150 300 

Network reconnection time (s) 8.0 12.0 
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Table 2: Key statistical characteristics of the model training dataset 

Characteristic Fluoride level Temperature (T) Humidity Voltage gradient (∇V) 
Mean 0.58 mg/L 23.7℃ 52.3%RH 0.12 mV/s 

Standard deviation 1.85 mg/L 3.8℃ 18.2%RH 0.94 mV/s 

Autocorrelation coefficient 0.88 (lag=1s) 0.92 (lag=1s) 0.76 (lag=1s) 0.56 (lag=1s) 

Maximum gradient 9.3 mg/L/s 1.8℃/s 12.5%RH/s 15.4 mV/s² 

Missing rate 0.05% 0.12% 0.09% 2.17% 

 

Software algorithm 

Fusion of data 

 The system receives the raw voltage signal, V (in 
mV) of the F ion selective electrode (FISE), the 
temperature sensor reading T (°C), and the ambient air 
relative humidity H (%) in real time. First, temperature 
compensation is performed based on the Nernst 
equation (mV) of the F ion selective electrode (FISE), 
the temperature sensor reading T (°C) and the ambient 
air relative humidity H (%, RH) in real time. First, 
temperature compensation is performed based on the 
Nernst equation- 

Vcomp=Vraw×[1+α(T-Tref)]+β⋅ΔH (1) 

α=0.023 ∘C 1 is the FISE temperature coefficient, 

Tref=25 °C, and Tref represents the humidity deviation 
reference value. For the nonlinear drift caused by 
humidity, a ridge regression compensation matrix is 
constructed as- 

[
Vfinal

∇V
] =(XTX+λI)

-1XTy,X= [
1 T ΔH T⋅ΔH
0 ∂T/∂t ∂H/∂t ∂2H/∂t2] (2) 

 The input vector is y= [
Vcomp

dVcomp

dt

] , the regularisation 

coefficient is λ=0.15 , the output Vfinal  is the fused 
voltage value, and ∇V  is the gradient noise estimate. 
The correction voltage maps the final F levelCF , the 
slope S=59.16mV/decade  (25℃ standard response), 
and the zero point E0 is automatically calibrated daily. 

The core model 

 The system organises input data in a sliding window, 
constructing a time series sample 

Xi {xt-59,xt-58,…,xt}∈R600×5  every 60 sec (600 sampling 
points). The feature dimensions include Flevel CF , 
temperature T, humidity H, voltage gradient ∇V, and 
device status code S. The data is normalised by the 
maximum and minimum values and input into the 
bidirectional LSTM layer (64 units each in the forward 
and backwards directions) to extract the hidden states 

ht
fw and ht

bw. The attention energy is calculated through 

the trainable matrix Wq∈R128×32and Wk∈R128×32: 

et=v⊤tanh⁡(Wq[ht
fw;ht

bw]+Wkhmean) (3) 

 hmean  is the time step mean vector, and v is the 
weight vector. Softmax normalization obtains the 

weight αt=exp⁡(et)/∑  60
i=1 exp⁡(ei). The context vector 

c is concatenated with the last time step state and then 

outputs the concentration sequence Ŷ for the next 30 
secthrough fully connected layer (128 ReLU units). 
Huber loss and gradient clipping (threshold 1.0) are 
used for training. Table 2 shows the key statistical 
features of the model training dataset. 

 The standard deviation of F concentration data 
reached 1.85 mg/L, reflecting the dramatic fluctuations 
in the laboratory environment. The high 
autocorrelation coefficient (0.88) verifies the continuity 
of the time series and supports LSTM modelling. 
Temperature shows a strong correlation (0.92) and low 
gradient (1.8℃/s), indicating that its slow-changing 
characteristics are suitable as an environmental 
compensation benchmark. The humidity standard 
deviation of 18.2%RH reveals the periodic impact of the 
air conditioning system. Its mutation (maximum 
gradient 12.5%RH/s) will cause FISE voltage drift, which 
requires dynamic weighted processing by the attention 
mechanism.12 

 The voltage gradient data missing rate of 2.17% is 
due to ADC sampling anomalies. The use of 
bidirectional LSTM can effectively fill the missing period 
characteristics. The maximum concentration gradient 
of 9.3 mg/L/s corresponds to the actual leakage 
scenario, requiring the model to cover the cumulative 
exposure risk with  30-sec prediction window. 

Early warning mechanism 

 The system continuously receives the 30-sec F 
concentration prediction sequence output by the 
LSTM-attention model and dynamically calculates the 
risk threshold with real-time environmental factors. 
When the predicted concentration exceeds 150% of the 
baseline threshold for 3 consecutive sec, a level 1 
warning (yellow warning) is triggered, and the platform 
automatically records the event and initiates a review 
and verification; if the predicted value continues to rise 
in the next 10 sec and exceeds the threshold by 200%. 
It is upgraded to a level 2 alarm (orange warning). A 
WeChat template message is simultaneously pushed to 
the responsible person. When the predicted 
concentration exceeds the safety upper limit (25 mg/L) 
or the instantaneous gradient is greater than 8 mg/L/s. 
Third-level red alarm is immediately activated, 
triggering SMS, WeChat, and sound and light alarms, 
and the ventilation system is activated through the 
MQTT protocol. All alarm events generate a unique 
traceability ID and are stored in a distributed database 
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Table 3: Laboratory actual leakage incident warning response record 

Event ID Leak source location 
Peak level 

(mg/L) 
Early warning time 

(s) 
Response delay 

(s) 

2023-F-017 Reactor R102, Zone B 28.9 25 8.2 

2023-F-024 Pipeline P207, Zone C 15.6 18 12.7 

2023-F-035 Storage Tank V309, Zone A 41.7 32 5.3 

2023-F-048 Vent D05, Zone D 9.8 0* 19.5 

2023-F-052 Lab Bench T11, Zone E 33.4 27 6.8 

 

(Redis+MySQL dual write). Operators must confirm the 
alarm within 90 sec through the mobile terminal 
button. Unconfirmed alarms will be pushed repeatedly 
every 30 sec until the threshold drops.13,14 Table 3 
indicated the warning response record of actual 
laboratory leakage events. 

 The highest measured value during the leak is 
recorded, and event 2023-F-035 reaches 41.7 mg/L (4 
times the safety limit), triggering a red alarm. The 
model predicts the time before the concentration 
reaches the yellow threshold, and event 2023-F-052 is 
warned 27 sec in advance, gaining a critical window for 
personnel evacuation. The time from the system 
pushing the alarm to the personnel confirming it on 
site, event 2023-F-024, is delayed by 12.7 sec due to 
night duty (the timeout threshold of 10 sec triggered a 
second push). 

Innovative technology integration 

 The system uses a F ion-selective electrode array 
and  temperature and humidity sensor to collect data 
in time and space synchronously (time alignment error 
<10ms). After the raw data is dynamically baseline 
calibrated and environmental drift compensated by the 
STM32 edge node, the LoRa-4G dual-mode 
communication engine selects the optimal link for 
transmission to the cloud. The LSTM-attention 
prediction model deployed in the cloud receives 60 sec 
of historical data stream in real time, and generates the 
concentration trajectory for the next 30 sec in the 
combination with the equipment operation status log,  
such as the reactor pressure valve switch event. When 
the predicted value exceeds the dynamic threshold, the 
graded warning protocol is immediately triggered, the 
ventilation system control command is synchronously 
activated (MODBUS-RTU response <800ms), and a 
unique ID for the leakage event is generated [15]. The 
ID automatically associates the historical knowledge 
base to match the disposal plan, pushes warning 
information, including the location map, through 
WeChat/SMS, and feeds back to the edge node to 
optimise the baseline parameters, forming a closed-
loop self-evolution architecture. Figure 2 shows the 
continuous monitoring data. 

 14:02:17 Yellow warning is triggered the 
concentration suddenly increases from the baseline 
0.62 to 1.89 mg/L, and the system detects that the 

temperature of reactor R102 drops by 0.1°C (indicating 
that the gas leaks and absorbs heat); 14:02:39 Orange 
warning is upgraded the concentration of 8.35 mg/L 
exceeds the dynamic threshold, and the positioning 
module locks the leak source at the coordinates; 
14:03:02 Red alarm is activated, 28.71 mg/L F 
concentration triggers the forced exhaust mode of the 
ventilation system. The temperature fluctuation during 
the whole process was<0.5°C, and the humidity change 
<1.4%RH, verifying the effectiveness of environmental 
compensation. 

 

Figure 2. Influence of continuous monitoring data 

 

RESULTS AND DISCUSSION 

Performance indicators 

 According to the ISO 11843 standard, the system 
obtains the voltage signal reference value by collecting 
ultrapure water blank samples (18.2 MΩ·cm) for 72 
consecutive hr. The standard deviation of 200 
measurements is calculated to be σ=0.037 mV. 
Combined with the six-point calibration curve (0.05-5.0 
mg/L) with a slope of S=58.97 mV/decade, the 
theoretical detection limit of 0.0021 mg/L obtained 
according to the formula LOD=3.3σ/S. The detection 
capability is verified using a 0.1 mg/L NaF spiked water 
sample (GBW(E)080549 standard matrix). The average 
concentration of 20 repeated measurements are 0.099 
mg/L, and the relative standard deviation (RSD) = 
3.08%, confirming that 0.1 mg/L is the practical 
detection limit. The environmental adaptability test 
shows that the detection limit shift is <0.003 mg/L 
when the temperature fluctuates by ±2°C, and the 
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Figure 3. The detection limit validation data 

 

signal drift is <0.8% when the humidity changes by 
±15%RH. Figure 3 shows the detection limit verification 
data. 

 The signal mean (5.90 mV) of the 0.1 mg/L spiked 
sample is significantly higher than the 3.3σ judgment 
line of the blank sample, and the measured 
concentration of 0.099 mg/L deviates from the actual 
value by only -1.0%, and RSD=3.08%, which is lower 
than the industry threshold of 5%. The temperature 
sensitivity analysis shows that the signal offset under 
extreme conditions of 24℃/26℃ is -0.8%/+1.1%, 
respectively, verifying the environmental robustness. 

 The response time test simulates a real laboratory 
leakage scenario, using a standard NaFsolution for 
instantaneous release (concentration gradient 0.5-50 
mg/L), and records the total time from the leakage to 
the system issuing an alarm (including the entire chain 
of sensor response, data transmission, model 
prediction, and warning push). The test is conducted in 
a constant temperature environment of 25±0.5℃, and 
the experiment is repeated 10 times for each 
concentration group. The time difference between the 
leakage starting point and the alarm tone is 
synchronously recorded by a high-speed camera 
(1000fps). The data is shown in Figure 4. 

 

 

Figure 4: Influence of F concentration levels and 
response time 

 

 The test data shows that the response time 
negatively correlates with the leakage concentration. 
The average response time for a low level event of 0.5 
mg/L is 19.19 sec, and that for optimum level event of 
50 mg/L is shortened to 6.53 sec. The fluctuation in the 
10.0 mg/L group is 2.5 sec, and the fluctuation is the 
smallest in the 20.0 mg/L group. All 60 tests meet the 
design standard of ≤20 sec, and the maximum response 
of the 0.5 mg/L group is 20.0 sec, which is close to the 
threshold but did not exceed the limit. Concentration 
gradient comparison reveals that 5.0 mg/L is the 



Research paper, Zhang Fluoride. Epub 2025 Aug 20: e375 

 

Page 7 of 9 

response inflection point (14.44 sec), and the response 
time drops rapidly above this concentration. Standard 
deviation analysis shows that the system stability is 
best in the 20.0 mg/L range and weakest in the 10.0 
mg/L range. The mean difference of 2.03 sec between 
the 20 and 50.0 mg/L groups confirms the advantage of 
high-concentration event response, while the mean 
difference of 1.89 sec between the 0.5 and 1.0 mg/L 
groups reflects the cost of low-concentration detection 
sensitivity. 

 The proposed method (LSTM-attention dynamic 
threshold system) is compared with three mainstream 
monitoring technologies (multi-sensor fixed threshold 
method, single LSTM prediction method, CNN time 
series feature analysis method) in the same test set 
(200 events). The test environment temperature is 
25±0.5℃ and humidity 55±5%RH. The leakage event 
triggered by 0.5/1.0/5.0/10.0/50.0 mg/L NaF solution. 
The interference events include temperature and 
humidity mutation (±5℃/min), equipment vibration (5-
200Hz), and F-containing disinfectant spraying. Figure 5 
shows the warning accuracy comparison. 

 

 

Figure 5: The impact of different applications of the 
early warning accuracy 

 

 In the scenario of micro-crack leakage in pipelines, 
the proposed approach achieves an accuracy of 96.3% 
due to the enhanced recognition of weak signals by the 
attention mechanism, which is significantly higher than 
fixed threshold method (82.4%) and the single LSTM 
method (90.3%). In the scenario of F-containing 
disinfectants, the proposed method improves the 
accuracy of 80.0% through equipment status linkage 
(automatically raising the threshold to 5.0 mg/L during 
the disinfection period), reducing the false alarm rate 
by 33.3% compared with fixed threshold method 
(46.7%). In the scenario of sudden temperature and 
humidity changes, the multi-sensor fusion algorithm 
enables the proposed method to maintain 100% 
accuracy, while the CNN method ignores the 
environmental coupling effect and its accuracy drops to 
94.3% when the humidity surges. The proposed 
method verifies the anti-interference ability of the 

Kalman filter with 100% accuracy in the equipment 
vibration scenario, reducing multiple false alarms 
compared with the single LSTM method (95.5%). All 
methods are 100% accurate in non-F interference 
(ethanol spraying), proving that the monitoring system 
has reasonable specificity, and the core breakthrough 
lies in the linkage mechanism between dynamic 
thresholds and operation logs. 

Advantages of system comparison  

 In a standard laboratory environment, 10 types of 
leakage scenarios (instantaneous rupture of the 
reactor, slow-release leakage of the pipeline, etc.) are 
simulated. The release rate of the NaF solution is 
controlled by a high-precision flow controller (0.1-5.0 
L/min). Four systems are applied for synchronous 
monitoring, this method proposed in this paper (LSTM-
attention dynamic prediction), the multi-sensor fixed 
threshold method, the single LSTM prediction method, 
and the CNN timing analysis methods. The warning 
time is defined as the time difference from the start of 
the leakage to the triggering of the alarm. The starting 
point of the leakage is confirmed by recording the 
moment when the droplets appeared with a high-
speed camera (1000fps). Figure 6 shows the 
comparison of the warning time. 

 The proposed method can achieve an early warning 
of more than 24 sec in all 10 scenarios. The LSTM-
attention model's keen capture of concentration 
gradients is the core advantage. For example, the 
pipeline sand hole leakage scenario still provides an 
early warning 27.8 sec earlier. In comparison, the single 
LSTM model only provides an early warning of 10.5 sec 
due to the lack of attention weight allocation. The fixed 
threshold method has an alarm lag in 6 scenarios (the 
longest is -15.4 sec) because it relies on the absolute 
value of the concentration and cannot predict the 
trend. Although the CNN method is 3-5 sec faster than 
single LSTM, it is limited by the convolution kernel size 
(fixed time window) and insufficient to respond to 
slow-release leakage. The method proposed in this 
paper performs best (32.5 sec lead time) in the reactor 
micro-crack scenario (0.1L/min), because the residual 
feedback mechanism enhances the model's sensitivity 
to initial weak signals. The lead time of all methods are 

reduced in the high-speed leakage scenario (＞3L/min) 

because the physical diffusion rate exceeds the model 
calculation cycle. This paper maintains a warning 

bottom line of ＞ 24 sec through adaptive window 

adjustment. 

Significance of the modelvalue 

 The system reconstructs the laboratory safety 
management process through real-time monitoring of 
F leaks and intelligent early warning closed loop, after  
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Figure 6: Impact of early warning time. 

 

Table 4: Specific data on improving safety management efficiency 

Metric 
Pre-

Implementation 
Post-

Implementation 
Improvement 

Industry 
Benchmark 

Leak discovery time (s) 2700 8.5 -99.7% ≤300 
Emergency response time (s) 1260 56 -95.6% ≤180 
Annual leak incidents 12 2 -83.3% ≤5 
Safety audit pass rate (%) 82.3 97.8 +15.5% ≥90 
Staff training time (h/year) 36 22 -38.9% ≤30 

 

deployment, a digital twin model is first established to 
map the locations of all hazardous sources (12 types of 
equipment, 56 pipelines), and a risk heat map is 
dynamically generated based on real-time monitoring 
data. Early warning events automatically trigger a 
graded response protocol (yellow warning notifies the 
responsible person, orange warning evacuates 
personnel, and red warning links emergency 
equipment). The application in a chemical laboratory of 
university in 2023 showed that the time to discover 
leaks is shortened from an average of 45 min to 8.5 sec, 
and the emergency response speed is enhanced by 
95.6%. Table 4 shows the specific data for improving 
safety management efficiency. 

CONCLUSION AND RECOMMENDATIONS 

The intelligent F-monitoring system for university 
laboratories, successfully developed in this study, 
establishes a comprehensive solution from real-time 
data collection to cloud-based intelligent early warning 
by integrating the FISE sensor array and environmental 
compensation technology, along with aLoRa and 4G 
dual-mode transmission architecture. The system 
innovatively employs a multi-source information fusion 
algorithm and an LSTM-attention prediction model, 
effectively overcoming the hysteresis limitations of 
traditional detection methods and enabling advanced 
leakage risk prediction. By combining a visual 
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monitoring platform with mobile alarm notifications, 
the system significantly enhances emergency response 
efficiency in cases of hazardous chemical leaks. 
Laboratory tests confirm that the system’s stability and 
reliability in complex environments meet practical 
application standards. This provides a scalable technical 
framework for university laboratory safety 
management while making a substantial contribution 
to preventing toxic substance leaks. Moreover, the 
system’s technical architecture can be extended to 
other hazardous chemical monitoring scenarios. 

Further research should focus on implementing 
advanced deep learning models to predict F leakage or 
abnormal concentrations proactively. Additionally, 
developing interpretable AI models would help 
researchers better understand the decision-making 
processes in F monitoring. Integrating nanotechnology-
based F sensors could further enhance sensitivity and 
enable real-time detection, ultimately supporting 
socioeconomic development. 
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