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INTRODUCTION

The monitoring of fluoride (F) pollution and the

Meixuan ZHANG

ABSTRACT

Purpose: To address the issues of inadequate leakage risk warnings due to the
extensive use of fluoride in university laboratories and the limitations of
traditional detection methods.

Methods: This study developed an artificial intelligence (Al) and information
technology-based real-time fluoride monitoring and intelligent early warning
system. The system employs a fluoride ion-selective electrode (FISE) array
along with a temperature/humidity sensor to form the perception layer. Real-
time data is transmitted wirelessly via LoRa technology to the STM32
microcontroller terminal.

Results: The data is uploaded to the cloud database via a 4G module, a multi-
sensor data fusion algorithm is applied to eliminate environmental
interference. A self-developed LSTM-Attention time-series prediction model is
deployed to enable intelligent early warning before concentrations exceed the
threshold. Additionally, a visual monitoring platform and mobile alarm
notifications are implemented. Test results demonstrate that the system
achieves a detection limit of 0.1 mg/L and a response time of <20 seconds.

Conclusions: The system effectively addresses the challenge of real-time
monitoring of fluoride hazards in laboratories and offers innovative technical
support for hazardous chemical safety management.

Keywords: Fluoride monitoring; Intelligent early warning; FISE; LSTM-
attention; Artificial intelligence

regions when F escapes, combining the low-altitude
meteorological characteristics to determine the

assessment of its environmental health risks exhibit a
multi-dimensional development trend, encompassing
urban pollution source control, drinking water safety
evaluation, and toxicological mechanism analysis.
National and International research scholars have
systematically explored F environmental behavior and
health impact through innovative monitoring
approaches and risk assessment models, providing a
scientific basis for pollution prevention and control. The
approaches for setting up F content monitoring in
urban fixed pollution  sources, considering
meteorological factors and determining the impact of
wind direction and pollution coefficient on the polluted
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number of monitoring aspects and completing the
setting of monitoring factors.! The collection of 7488
drinking water samples from drinking water monitoring
areas fixed in 12 leagues and cities in Inner Mongolia,
conducted during the arid and semiarid seasons, and
applied the "four-step method" health risk assessment
model of the United States Environmental Protection
Agency (USEPA) to conduct health risk assessment
through oral intake.2

Fluoride data was collected on drinking water from
Luoyang city, China through National Drinking Water
Quality and Hygiene Monitoring Information System,
and applied the rank sum test to compare the
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differences in F concentrations between different
years, counties, water samples and sampling types-
periods, and water resources, and assessed the health
risks caused by F through drinking water based on the
four-step method.? The analytical results of F in rural
drinking water in Jinzhong City from 2018 to 2022,
conducted non-carcinogenic health risk assessment.*

The result findings of 62 groundwater wells in
Xuzhou city, China in the past 10 years. They conducted
health risk assessment, observed the spatiotemporal
variations of groundwater F in the Xuzhou area and the
size of the non-carcinogenic risk index.> Johnston and
Strobel®demonstrated the role of F at chemical, cellular
and multisystem levels, and how organisms defend
against F. The synthesis and characterization of a new
terpyridine-based  nitrosyl  ruthenium  complex
[Ru(Cl)2NO(terpy-CeHaOH)] 1-Ru-OH.” The deliberate
addition of precise doses of F to water supplies is a
public health measure aimed at promoting dental
health.®The data analysis of groundwater quality and F
occurrence obtained from the Korean groundwater
monitoring network.® F concentrations observed 55% in
groundwater samples in Yavtmal county, Maharashtra,
India, exceeded the permissible limit. It developed a
comprehensive research framework for F pollution
from monitoring technology optimization, exposure
pathway analysis, and health effect assessment.%®

University laboratories frequently use more toxic
F,i.e., hydrofluoric acid. Traditional manual testing
requires sampling and testing, which takes more time
and cannot capture immediate leaks, leading to various
severe burns and environmental pollution issues. The
closed space and densely populated laboratories
exponentially magnify the consequences of leaks.
Existing monitoring equipment generally has defects,
such as high false alarm rates and slow responses,
making it challenging to meet real-time risk
management requirements.

The present study combines F ion-selective
electrode arrays with low-power IoT transmission,
dynamically compensates for observation errors
through multi-source environmental parameters, and
introduces a deep learning time series prediction model
to analyse concentration change trends, breaking
through the limitations of passive threshold alarms. The
collaborative design of the mobile terminal and the
visualisation platform achieves seamless interaction
from data collection to emergency response, providing
active defence measures for laboratory safety
management.

The system has built a complete monitoring
architecture covering the perception layer to the
application layer, significantly improving the timeliness
of F risk identification. The innovative prediction model
advances the warning window before the leak occurs,
effectively avoiding accident escalation. It has been
proven to be adaptable to complex environments, and

Page 2 of 9

Fluoride. Epub 2025 Aug 20: e375

its technical route provides reusable solutions for the
field of hazardous chemicals supervision, promoting
the transformation of laboratory safety management
from emergency response to pre-emptive prevention.

The present article integrate the intelligent
monitoring and cross-scale risk assessment to promote
the formulation of precision environmental governance
and public health intervention strategies for
ecofriendly environment.

MATERIAL AND METHODS
System architecture

A F ion-selective electrode (FISE) sensor array (3-
node redundant design per area) and high-precision
temperature and humidity sensor are applied at the
laboratory monitoring scale. FISE outputs a voltage
signal every 60 sec (range £500mV, resolution 0.1mV),
which is collected in real time by the ADC module of the
STM32F407ZGT6 microcontroller and synchronously
receives temperature and humidity compensation data
(DHT22 sensor, accuracy +2%RH). After the raw data is
denoised by Kalman filtering, the STM32 calls the
dynamic threshold algorithm to determine whether to
trigger immediate transmission. If the Flevel exceeds
the safety threshold (1.0 mg/L) or the fluctuation rate
is greater than 15%, the LoRa wireless transmission
(frequency band 868 MHz, transmission power 20 dBm)
is immediately started, otherwise, compressed data
packets are sent to the cloud via the 4G module
(SIM7600CE) at 10 min intervals. The cloud receives
data streams based on the Kafka message queue, stores
them in the time series database (InfluxDB), and
performs multi-sensor fusion. First, the FISE voltage
value is temperature compensated, and then the F level
is converted (Nernst equation slope calibration). The
fused data is input into the LSTM-attention prediction
model (TensorFlow Serving deployment, input window
60 sec, output concentration in the next 30 sec). If the
predicted value exceeds the threshold, a WeChat/SMS
alarm is immediately triggered (Tencent Cloud API call)
and the leak location is marked on the map interface
(Echarts  visualization).  All  device status s
bidirectionally monitored through MQTT protocol to
achieve remote diagnosis and dynamic adjustment of
the sampling frequency. Figure 1 shows the system
architecture of this article.

Outline of hardware

The PF-202 F ion selective electrode (FISE) is the
core sensing unit. It's ion exchange membrane
response time is 0.3 sec, and coupled with a low-noise
constant voltage source circuit (output drift 0.1 mV).
The original electrode signal is amplified by 100 times
gain (bandwidth 1 kHz) through the AD623
instrumentation amplifier and input into a 24-bit 2-A
ADC (ADS1256) for digitisation at sampling rate of 1
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kHz, with an effective resolution of 0.01 mV.
Environmental compensation is achieved by the
Sensirion SHT35 temperature and humidity sensor,
which synchronously collects temperature (+0.2°C
accuracy) and humidity (+1.5%RH accuracy) every 200
ms through the I2C interface, and the original data is
packaged into a 32-byte frame format and transmitted
via the SPI bus [11].

The STM32F407ZGT6 microcontroller builds a
three-layer hardware pipeline, such as the FISE voltage
(-500-500 mV range) and environmental parameters
are synchronously analyzed through dual ADC channel
polling (scanning cycle 5 ms), then, adaptive Kalman
filtering (process noise covariance Q=0.01, observation
noise R=0.001) is performed to eliminate signal jitter,
finally, a transmission decision is generated based on
the dynamic threshold algorithm (60-sec floating
window, standard deviation coefficient K=2.5). Multi-
source data is written to 8 KB double-buffered SRAM
through DMA. When the cache reaches 512 bytes, a
hardware interrupt is triggered to start the
communication protocol encapsulation (Modbus RTU
frame structure).

The LoRa link uses the Semtech SX1278 module
(868 MHz frequency band, spreading factor SF=10), and
the transmission power is dynamically adjusted (14-20
dBm, step 1 dBm). When the Flevel change rate is
greater than 12%/secor greater than 1.2 mg/L, LoRa is
activated to send a 64-byte data packet (air
transmission time 148 ms). The 4G link establishes a
TCP/IP connection through the Quectel EC200U
module and sends compressed data packets every 10
min (ZL77 algorithm compression rate 60%). The RSSI
threshold controls dual-mode switching. LoRa is
preferred when the signal strength is greater than 110
dBm; otherwise, it switches to 4G (reconnection time
<8 sec). Table 1 shows the specific key hardware
characteristics.

Table 1.The detailed list of key hardware parameters
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Figure 1. System architecture of the present study

Category Parameter Typical value Limit value
FISE sensor Response time (s) 0.30 0.50
Measurement range (mg/L) 0.01-100 0.001-200
ADC converter Effective resolution (mV) 0.01 0.05
Sampling rate (Hz) 1000 2000
ADC conversion delay (ms) 0.15 0.25
STM32 processor SRAM capacity (Byte) 8192 -
LoRa communication Receiver sensitivity (dBm) -148 -137
Standby power consumption (mA) 0.20 0.35
4G communication Data transfer rate (kbps) 150 300
Network reconnection time (s) 8.0 12.0
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Table 2: Key statistical characteristics of the model training dataset

Characteristic Fluoride level Temperature (T) Humidity Voltage gradient (VV)
Mean 0.58 mg/L 23.7°C 52.3%RH 0.12 mV/s
Standard deviation 1.85 mg/L 3.8°C 18.2%RH 0.94 mV/s
Autocorrelation coefficient 0.88 (lag=1s) 0.92 (lag=1s) 0.76 (lag=1s) 0.56 (lag=1s)
Maximum gradient 9.3 mg/L/s 1.8°C/s 12.5%RH/s 15.4 mV/s?
Missing rate 0.05% 0.12% 0.09% 2.17%

Software algorithm
Fusion of data

The system receives the raw voltage signal, V (in
mV) of the F ion selective electrode (FISE), the
temperature sensor reading T (°C), and the ambient air
relative humidity H (%) in real time. First, temperature
compensation is performed based on the Nernst
equation (mV) of the F ion selective electrode (FISE),
the temperature sensor reading T (°C) and the ambient
air relative humidity H (%, RH) in real time. First,
temperature compensation is performed based on the
Nernst equation-

Vcomp=Vrawx[1+a(T‘Tref)]+6'AH (1)

a=0.023 °C1 is the FISE temperature coefficient,
T.e=25 °C, and T, represents the humidity deviation
reference value. For the nonlinear drift caused by
humidity, a ridge regression compensation matrix is
constructed as-

Vinall _ a1 T AH T-AH

[l =0mxea™ X[y sroe ompoe otmpor] @)
Vcomp

The input vector is y=|av,emy |, the regularisation

dt

coefficient is A=0.15, the output V., is the fused

voltage value, and VV is the gradient noise estimate.
The correction voltage maps the final F levelC;, the
slope $=59.16mV/decade (25°C standard response),
and the zero point E, is automatically calibrated daily.

The core model

The system organises input data in a sliding window,
constructing a time series sample
X; {Xe-59,Xe-58,- X }ER®P> every 60 sec (600 sampling
points). The feature dimensions include Flevel C;,
temperature T, humidity H, voltage gradient VV, and
device status code S. The data is normalised by the
maximum and minimum values and input into the
bidirectional LSTM layer (64 units each in the forward
and backwards directions) to extract the hidden states
h™ and hP¥. The attention energy is calculated through
the trainable matrix W,€R"?#*3?and W, eR?*#32;

e=vTtanhE(W, [h*;h2 T+W, h megn) (3)

Nmean is the time step mean vector, and v is the
weight vector. Softmax normalization obtains the

c is concatenated with the last time step state and then
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outputs the concentration sequence Y for the next 30
secthrough fully connected layer (128 RelLU units).
Huber loss and gradient clipping (threshold 1.0) are
used for training. Table 2 shows the key statistical
features of the model training dataset.

The standard deviation of F concentration data
reached 1.85 mg/L, reflecting the dramatic fluctuations
in the laboratory environment. The high
autocorrelation coefficient (0.88) verifies the continuity
of the time series and supports LSTM modelling.
Temperature shows a strong correlation (0.92) and low
gradient (1.8°C/s), indicating that its slow-changing
characteristics are suitable as an environmental
compensation benchmark. The humidity standard
deviation of 18.2%RH reveals the periodic impact of the
air conditioning system. Its mutation (maximum
gradient 12.5%RH/s) will cause FISE voltage drift, which
requires dynamic weighted processing by the attention
mechanism.?

The voltage gradient data missing rate of 2.17% is
due to ADC sampling anomalies. The use of
bidirectional LSTM can effectively fill the missing period
characteristics. The maximum concentration gradient
of 9.3 mg/L/s corresponds to the actual leakage
scenario, requiring the model to cover the cumulative
exposure risk with 30-sec prediction window.

Early warning mechanism

The system continuously receives the 30-sec F
concentration prediction sequence output by the
LSTM-attention model and dynamically calculates the
risk threshold with real-time environmental factors.
When the predicted concentration exceeds 150% of the
baseline threshold for 3 consecutive sec, a level 1
warning (yellow warning) is triggered, and the platform
automatically records the event and initiates a review
and verification; if the predicted value continues to rise
in the next 10 sec and exceeds the threshold by 200%.
It is upgraded to a level 2 alarm (orange warning). A
WeChat template message is simultaneously pushed to
the responsible person. When the predicted
concentration exceeds the safety upper limit (25 mg/L)
or the instantaneous gradient is greater than 8 mg/L/s.
Third-level red alarm is immediately activated,
triggering SMS, WeChat, and sound and light alarms,
and the ventilation system is activated through the
MQTT protocol. All alarm events generate a unique
traceability ID and are stored in a distributed database
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Table 3: Laboratory actual leakage incident warning response record

Event ID Leak source location Peak level Early warning time Response delay
(mg/L) (s) (s)
2023-F-017 Reactor R102, Zone B 28.9 25 8.2
2023-F-024 Pipeline P207, Zone C 15.6 18 12.7
2023-F-035 Storage Tank V309, Zone A 41.7 32 5.3
2023-F-048 Vent DO5, Zone D 9.8 0* 19.5
2023-F-052 Lab Bench T11, Zone E 334 27 6.8

(Redis+MySQL dual write). Operators must confirm the
alarm within 90 sec through the mobile terminal
button. Unconfirmed alarms will be pushed repeatedly
every 30 sec until the threshold drops.’®'* Table 3
indicated the warning response record of actual
laboratory leakage events.

The highest measured value during the leak is
recorded, and event 2023-F-035 reaches 41.7 mg/L (4
times the safety limit), triggering a red alarm. The
model predicts the time before the concentration
reaches the yellow threshold, and event 2023-F-052 is
warned 27 sec in advance, gaining a critical window for
personnel evacuation. The time from the system
pushing the alarm to the personnel confirming it on
site, event 2023-F-024, is delayed by 12.7 sec due to
night duty (the timeout threshold of 10 sec triggered a
second push).

Innovative technology integration

The system uses a F ion-selective electrode array
and temperature and humidity sensor to collect data
in time and space synchronously (time alignment error
<10ms). After the raw data is dynamically baseline
calibrated and environmental drift compensated by the
STM32 edge node, the LoRa-4G dual-mode
communication engine selects the optimal link for
transmission to the cloud. The LSTM-attention
prediction model deployed in the cloud receives 60 sec
of historical data stream in real time, and generates the
concentration trajectory for the next 30 sec in the
combination with the equipment operation status log,
such as the reactor pressure valve switch event. When
the predicted value exceeds the dynamic threshold, the
graded warning protocol is immediately triggered, the
ventilation system control command is synchronously
activated (MODBUS-RTU response <800ms), and a
unique ID for the leakage event is generated [15]. The
ID automatically associates the historical knowledge
base to match the disposal plan, pushes warning
information, including the location map, through
WeChat/SMS, and feeds back to the edge node to
optimise the baseline parameters, forming a closed-
loop self-evolution architecture. Figure 2 shows the
continuous monitoring data.

14:02:17 Yellow warning is triggered the
concentration suddenly increases from the baseline
0.62 to 1.89 mg/L, and the system detects that the
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temperature of reactor R102 drops by 0.1°C (indicating
that the gas leaks and absorbs heat); 14:02:39 Orange
warning is upgraded the concentration of 8.35 mg/L
exceeds the dynamic threshold, and the positioning
module locks the leak source at the coordinates;
14:03:02 Red alarm is activated, 28.71 mg/L F
concentration triggers the forced exhaust mode of the
ventilation system. The temperature fluctuation during
the whole process was<0.5°C, and the humidity change
<1.4%RH, verifying the effectiveness of environmental
compensation.

Flucride Concentration (mail) Temperature (C) Humidity (%AH)

hY 58 3
2> e @

Timestamp

@® @9

o

Figure 2. Influence of continuous monitoring data

RESULTS AND DISCUSSION
Performance indicators

According to the ISO 11843 standard, the system
obtains the voltage signal reference value by collecting
ultrapure water blank samples (18.2 MQ-cm) for 72
consecutive hr. The standard deviation of 200
measurements is calculated to be 0=0.037 mV.
Combined with the six-point calibration curve (0.05-5.0
mg/L) with a slope of S$=58.97 mV/decade, the
theoretical detection limit of 0.0021 mg/L obtained
according to the formula LOD=3.30/S. The detection
capability is verified using a 0.1 mg/L NaF spiked water
sample (GBW(E)080549 standard matrix). The average
concentration of 20 repeated measurements are 0.099
mg/L, and the relative standard deviation (RSD) =
3.08%, confirming that 0.1 mg/L is the practical
detection limit. The environmental adaptability test
shows that the detection limit shift is <0.003 mg/L
when the temperature fluctuates by +2°C, and the

& &
Temperature (*C) / Humidity (%RH)
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Figure 3. The detection limit validation data

signal drift is <0.8% when the humidity changes by
1+15%RH. Figure 3 shows the detection limit verification
data.

The signal mean (5.90 mV) of the 0.1 mg/L spiked
sample is significantly higher than the 3.3c judgment
line of the blank sample, and the measured
concentration of 0.099 mg/L deviates from the actual
value by only -1.0%, and RSD=3.08%, which is lower
than the industry threshold of 5%. The temperature
sensitivity analysis shows that the signal offset under
extreme conditions of 24°C/26°C is -0.8%/+1.1%,
respectively, verifying the environmental robustness.

The response time test simulates a real laboratory
leakage scenario, using a standard NaFsolution for
instantaneous release (concentration gradient 0.5-50
mg/L), and records the total time from the leakage to
the system issuing an alarm (including the entire chain
of sensor response, data transmission, model
prediction, and warning push). The test is conducted in
a constant temperature environment of 25+0.5°C, and
the experiment is repeated 10 times for each
concentration group. The time difference between the
leakage starting point and the alarm tone is
synchronously recorded by a high-speed camera
(1000fps). The data is shown in Figure 4.
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Figure 4: Influence of F concentration levels and
response time

The test data shows that the response time
negatively correlates with the leakage concentration.
The average response time for a low level event of 0.5
mg/L is 19.19 sec, and that for optimum level event of
50 mg/L is shortened to 6.53 sec. The fluctuation in the
10.0 mg/L group is 2.5 sec, and the fluctuation is the
smallest in the 20.0 mg/L group. All 60 tests meet the
design standard of <20 sec, and the maximum response
of the 0.5 mg/L group is 20.0 sec, which is close to the
threshold but did not exceed the limit. Concentration
gradient comparison reveals that 5.0 mg/L is the
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response inflection point (14.44 sec), and the response
time drops rapidly above this concentration. Standard
deviation analysis shows that the system stability is
best in the 20.0 mg/L range and weakest in the 10.0
mg/L range. The mean difference of 2.03 sec between
the 20 and 50.0 mg/L groups confirms the advantage of
high-concentration event response, while the mean
difference of 1.89 sec between the 0.5 and 1.0 mg/L
groups reflects the cost of low-concentration detection
sensitivity.

The proposed method (LSTM-attention dynamic
threshold system) is compared with three mainstream
monitoring technologies (multi-sensor fixed threshold
method, single LSTM prediction method, CNN time
series feature analysis method) in the same test set
(200 events). The test environment temperature is
2510.5°C and humidity 55+5%RH. The leakage event
triggered by 0.5/1.0/5.0/10.0/50.0 mg/L NaF solution.
The interference events include temperature and
humidity mutation (+5°C/min), equipment vibration (5-
200Hz), and F-containing disinfectant spraying. Figure 5
shows the warning accuracy comparison.

Figure 5: The impact of different applications of the
early warning accuracy

In the scenario of micro-crack leakage in pipelines,
the proposed approach achieves an accuracy of 96.3%
due to the enhanced recognition of weak signals by the
attention mechanism, which is significantly higher than
fixed threshold method (82.4%) and the single LSTM
method (90.3%). In the scenario of F-containing
disinfectants, the proposed method improves the
accuracy of 80.0% through equipment status linkage
(automatically raising the threshold to 5.0 mg/L during
the disinfection period), reducing the false alarm rate
by 33.3% compared with fixed threshold method
(46.7%). In the scenario of sudden temperature and
humidity changes, the multi-sensor fusion algorithm
enables the proposed method to maintain 100%
accuracy, while the CNN method ignores the
environmental coupling effect and its accuracy drops to
94.3% when the humidity surges. The proposed
method verifies the anti-interference ability of the
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Kalman filter with 100% accuracy in the equipment
vibration scenario, reducing multiple false alarms
compared with the single LSTM method (95.5%). All
methods are 100% accurate in non-F interference
(ethanol spraying), proving that the monitoring system
has reasonable specificity, and the core breakthrough
lies in the linkage mechanism between dynamic
thresholds and operation logs.

Advantages of system comparison

In a standard laboratory environment, 10 types of
leakage scenarios (instantaneous rupture of the
reactor, slow-release leakage of the pipeline, etc.) are
simulated. The release rate of the NaF solution is
controlled by a high-precision flow controller (0.1-5.0
L/min). Four systems are applied for synchronous
monitoring, this method proposed in this paper (LSTM-
attention dynamic prediction), the multi-sensor fixed
threshold method, the single LSTM prediction method,
and the CNN timing analysis methods. The warning
time is defined as the time difference from the start of
the leakage to the triggering of the alarm. The starting
point of the leakage is confirmed by recording the
moment when the droplets appeared with a high-
speed camera (1000fps). Figure 6 shows the
comparison of the warning time.

The proposed method can achieve an early warning
of more than 24 sec in all 10 scenarios. The LSTM-
attention model's keen capture of concentration
gradients is the core advantage. For example, the
pipeline sand hole leakage scenario still provides an
early warning 27.8 sec earlier. In comparison, the single
LSTM model only provides an early warning of 10.5 sec
due to the lack of attention weight allocation. The fixed
threshold method has an alarm lag in 6 scenarios (the
longest is -15.4 sec) because it relies on the absolute
value of the concentration and cannot predict the
trend. Although the CNN method is 3-5 sec faster than
single LSTM, it is limited by the convolution kernel size
(fixed time window) and insufficient to respond to
slow-release leakage. The method proposed in this
paper performs best (32.5 sec lead time) in the reactor
micro-crack scenario (0.1L/min), because the residual
feedback mechanism enhances the model's sensitivity
to initial weak signals. The lead time of all methods are

reduced in the high-speed leakage scenario ( > 3L/min)

because the physical diffusion rate exceeds the model
calculation cycle. This paper maintains a warning

bottom line of > 24 sec through adaptive window
adjustment.

Significance of the modelvalue

The system reconstructs the laboratory safety
management process through real-time monitoring of
F leaks and intelligent early warning closed loop, after
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Figure 6: Impact of early warning time.

Table 4: Specific data on improving safety management efficiency

. Pre- Post- Industry
Metric . . Improvement
Implementation Implementation Benchmark
Leak discovery time (s) 2700 8.5 -99.7% <300
Emergency response time (s) 1260 56 -95.6% <180
Annual leak incidents 12 2 -83.3% <5
Safety audit pass rate (%) 82.3 97.8 +15.5% >90
Staff training time (h/year) 36 22 -38.9% <30

deployment, a digital twin model is first established to
map the locations of all hazardous sources (12 types of
equipment, 56 pipelines), and a risk heat map is
dynamically generated based on real-time monitoring
data. Early warning events automatically trigger a
graded response protocol (yellow warning notifies the
responsible person, orange warning evacuates
personnel, and red warning links emergency
equipment). The application in a chemical laboratory of
university in 2023 showed that the time to discover
leaks is shortened from an average of 45 min to 8.5 sec,
and the emergency response speed is enhanced by
95.6%. Table 4 shows the specific data for improving
safety management efficiency.
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CONCLUSION AND RECOMMENDATIONS

The intelligent F-monitoring system for university
laboratories, successfully developed in this study,
establishes a comprehensive solution from real-time
data collection to cloud-based intelligent early warning
by integrating the FISE sensor array and environmental
compensation technology, along with aloRa and 4G
dual-mode transmission architecture. The system
innovatively employs a multi-source information fusion
algorithm and an LSTM-attention prediction model,
effectively overcoming the hysteresis limitations of
traditional detection methods and enabling advanced
leakage risk prediction. By combining a visual



Research paper, Zhang

monitoring platform with mobile alarm notifications,
the system significantly enhances emergency response
efficiency in cases of hazardous chemical leaks.
Laboratory tests confirm that the system’s stability and
reliability in complex environments meet practical
application standards. This provides a scalable technical
framework  for  university laboratory safety
management while making a substantial contribution
to preventing toxic substance leaks. Moreover, the
system’s technical architecture can be extended to
other hazardous chemical monitoring scenarios.

Further research should focus on implementing
advanced deep learning models to predict F leakage or
abnormal concentrations proactively. Additionally,
developing interpretable Al models would help
researchers better understand the decision-making
processes in F monitoring. Integrating nanotechnology-
based F sensors could further enhance sensitivity and
enable real-time detection, ultimately supporting
socioeconomic development.
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