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INTRODUCTION 
 

 The prolonged high fluoride exposure results 
in development of arthritis-like syndromes, and finally 

chronic skeletal fluorosis. This problem applies 
particularly to residents of endemic regions where 
groundwater is rich in fluoride1 and professionally 
exposed individuals.2 The common initial symptoms of 
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ABSTRACT 
Purpose:   Chronic exposure to fluoride leads to the development of conditions 
resembling arthritis, which can be treated as functional disorders or diagnosed as 
arthritis. The pathogenesis of joint diseases related to fluoride toxicity is unclear. 
In this study, we hypothesized that fluoride affects fibroblast-like synoviocytes 
(FLS), one of the main populations of synovial cells present in the joint. FLS play a 
central role as mediators of joint damage in arthritis, as they produce cytokines 
and chemokines that recruit and activate leukocytes, as well as matrix 
metalloproteinases (MMPs) that degrade extracellular matrix proteins. Another 
characteristic of arthritis is the excessive proliferation and reduced susceptibility 
of FLS to apoptosis. Therefore, our study aimed to evaluate the effect of sodium 
fluoride (NaF) on the proliferation, apoptosis, and expression of pro-
inflammatory cytokines and metalloproteinases in a human fibroblast-like 
synoviocyte (HFLS) cell line. 

Methods:    HFLS were exposed to NaF at concentrations corresponding to 
fluoride levels in the blood plasma of individuals living in non-endemic regions 
(1-2.5 µM) and individuals exposed to environmental fluoride (5-10 µM). HFLS 
proliferation and apoptosis were assessed by flow cytometry. mRNA expression 
of TNF-α, IL-6, IL-8, MMP-3, and MMP-9 was evaluated using real-time PCR. To 
our knowledge, this is the first study investigating the effects of NaF on HFLS. 

Results:    We did not find evidence that fluoride in the concentrations used 
stimulates excessive proliferation or limits apoptosis in HFLS. However, we 
observed increased expression of the pro-inflammatory cytokines TNF-α, IL-6, IL-
8, and metalloproteinases MMP-3 and MMP-9. 

Conclusions:    We concluded that fluoride at concentrations of 5-10 µM initiates 
an inflammatory response in HFLS, which may be the beginning of joint 
inflammation and destruction. 
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fluoride toxicity in skeletal system are chronic fatigue, 
vague, diffuse aches, stiffness of joints with decreased 
range of motion and muscle weakness.1 These 
symptoms may be dismissed as functional or arthritis 
(rheumatoid arthritis (RA), osteoarthritis (OA) or 
seronegative spondyloarthropathy), but in fact they 
may be early signs of fluoride poisoning and its 
damaging effect on tendinous insertions and ligaments 
as well as joint capsules.3-9 During disease progression 
the bones undergo calcification (essentially spine), 
osteoporosis develops in long bones, what finally leads 
to weakness and painful of bones and joints, and 
disability.1 A wide range of fluoride intoxication signs in 
musculoskeletal system have been described in the 
endemic areas, especially some regions of Asia6,10-14 
and Africa.15,16 
 

The pathogenesis of joints disease associated 
with fluoride intoxication is not clear. Until now, the 
pathomechanism of bone lesions in skeletal fluorosis 
has been studied. It includes the process of bone 
turnover through impact of fluoride on osteoblasts and 
osteoclasts functions.17,18 It is interesting whether the 
pathological processes also occur in the synovium like 
in rheumatic diseases. The direct fluoride effects on 
main cells of synovium, macrophage-like synoviocytes 
(MLS) and fibroblast-like synoviocytes (FLS), and their 
role in development of degenerative changes of joints 
is not investigated. Both types of synovium cells are 
known for the regulation of joint homeostasis, but also 
their participation in the pathogenesis of arthritis.19 
Previous studies indicated that sodium fluoride (NaF) 
(3-10 µM) promoted oxidative stress20 and changed the 
amount and activity of enzymes, such as 
cyclooxygenases21, 15-lipoxygenase22 or 
phospholipase-223, in macrophages derived from THP-1 

cells or peripheral blood mononuclear cells (PBMC). In 
this way, it contributes to the initiating and 
development of inflammatory process by 
macrophages. 

 

We suspected that fluoride influences on the 
second main cellular component of the synovium, FLS, 
by changing their phenotype from normal to 
inflammatory. FLSs, together with MLS, form the two- 
or three-layer lining of joint synovium, which contacts 
with the intra-articular cavity and produces lubricious 
synovial fluid. FLSs, also known as type B synoviocytes, 
are mesenchymal cells that express specific adhesion 
molecules (integrins, ICAM-1, cadherin-11) and 
produce extracellular matrix proteins (type IV and V 
collagens) and components of synovial fluid 
(hyaluronan and lubricin), thanks to which these cells 
play structural and functional roles in the joints.24,25 As 
a result of inflammation in the synovium, the normal 
lining structure is converted into a pannus-like 
structure, a hyperplastic synovial lining containing a 
higher number of activated FLSs and macrophages that 
spreads into the joint space, adhere to the cartilage 
surface, and attack and degrade the cartilage matrix 
causing joint destruction. What is important, FLSs are 
known as central mediator of join damage in 
arthritides because produce cytokines and chemokines 
that recruit and activate leukocytes, and matrix 
metalloproteinases (MMPs) that degrade extracellular 
matrix proteins.23,24 

 

Hence, the present study was undertaken to 
evaluate the effects of NaF on proliferation of HFLS as 
well as the expression of pro-inflammatory cytokines 
and MMPs associated with the pathogenesis of 
arthritis. 

 

MATERIAL AND METHODS 
 

Reagents 
 

All-in-one ready-to-use synoviocyte growth 
medium (SGM) and synoviocyte basal medium (SBM) 
were purchased from Cell Applications (San Diego, CA, 
USA). Trypsin-EDTA solution, trypsin inhibitor from 
Glycine max, Hanks’ Balanced Salt solution, phosphate 
buffered saline (PBS) and fluoride ion solution for ISE 
(0,1 M NaF) was obtained from Sigma Aldrich (St. Louis, 
MO, USA). Fetal bovine serum was from Thermo Fisher 
Scientific (Gibco, Brasil).  

 

Cell culture 
 

The study was conducted on human 
fibroblast-like synoviocytes (HFLS), which were derived 
from normal synovial tissue and purchased as frozen 
vial from Cell Applications (San Diego, CA, USA) 
(catalog no. 408-05a). Cells were handled as 

recommended by the procedure and seeded in SGM 
(Cell Applications, San Diego, CA, USA) in 75 cm2 
culture flask (Sigma Aldrich, St. Louis, MO, USA ). The 
flask was placed in humidified incubator at 37°C in an 
atmosphere 5% CO2. The cells were subcultured when 
the HFLS culture reaches 80% confluency. HFLS were 
used to experiments between three and seven 
passages. 
 

Proliferation assay 
 

The HFLS were seeded at 2.0 x 103 cells per 
well in 96-wells plate with 100 µL SGM. The cells were 
cultured for 24 hrs and then medium were changed on 
SGM with (1-10 µM) or without sodium fluoride 
(control). Medium was changed every 24 hrs. The cell 
proliferation was evaluated after 24, 48 and 72 hrs 
culture by WST-1 cell proliferation assay (Roche, Basel, 
Switzerland). The absorbance of the formazan product 
was measured after 2 hrs incubation with 10 µL WST-1 
on automated Microplate Reader EnVision 2104 
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(Perkin Elmer, Waltham, MA, USA) at 450 nm with 
correction at 620 nm. 
 

Apoptosis assay 
 

The HFLS were seeded into 6-well plates at an 
initial density of 12 × 104/mL SGM. The cells were 
cultured for 24 hours and then medium were changed 
on SGM with (1-10 µM) or without sodium fluoride 
(control). Apoptosis was evaluated after 24, 48 and 72 
hours by the Annexin V-FITC Apoptosis Kit (BD 
Bioscience, San Diego, CA, USA). The harvested cells 
were washed with PBS, resuspended in 100 µL of 
buffer, and stained with FITC-conjugated annexin-V 
and propidium iodide. The cells were stained according 
to the manufacturer’s instructions and analyzed by 
flow cytometry. The histograms were analyzed with 
Kaluza Analysis Software v2.1 (Beckman Culture, Brea, 
CA, USA). The results are expressed as the percentage 
of apoptotic cells (annexin V+ cells).  

 

mRNA expression of pro-inflammatory cytokines and 
metaloproteinases after culture with sodium fluoride 

 

The HFLS were seeded at 25 x 103 cells per 
well in 12-wells plate with 750 µL SGM and cultured 
until they reached 80% confluence. Then cells were 
starved in 750 µL serum-reduced medium (0,5% FBS in 
SBM) for 24 hours. After starvation medium were 
changed on 750 µL serum-reduced medium with (1 
µM, 2,5 µM, 5 µM, 10 µM) or without sodium fluoride 
(control) for 6, 12 and 24 hours. Finally, the cells were 
washed with PBS and lysed with RLT buffer. 

 

Total RNA was isolated using the Rneasy Mini 
Kit (QIAGEN, Valencia, CA, USA) and reverse-
transcribed into cDNA using the First Strand cDNA 
Synthesis Kit (Thermo Scientific, Waltham, MA, USA) on 
a T100 thermal cycler (BIO-RAD, Philadelphia, PA, USA). 
The quantitative assessment of mRNA levels was 
performed by the real-time PCR on an ABI 7500 Fast 
instrument (Applied Biosystems, Foster City, CA, USA) 
with Power SYBR Green PCR Master Mix reagent 
(Applied Biosystems, Foster City, CA, USA). The primer 
sequences used for real time PCR analysis are shown in 
Table 1. The thermal cycling conditions were as 
follows: (1) 95°C for 15 seconds, (2) 40 cycles of 95°C 
for 15 seconds, (3) 60°C for 1 min. According to the 
melting point analysis, only one PCR product was 
amplified under those conditions. The relative 
expression of target genes was determined by the ΔCt 
method with β2-microglobulin as the internal 
reference control gene. 

  

Statistical analysis 
 

The statistical analysis was performed by 
Statistica 13.0 (StatSoft, Cracow, Poland). Results are 
expressed as mean ± standard error of mean (SEM) 

(from three independent experiments). The normality 
of variables was tested by the Shapiro-Wilk test. 
Statistical comparisons were performed using the 
Mann-Whitney U test. p<0.05 was considered 
statistically significant. 

 

RESULTS 
 

Proliferation 
 

Figure 1 shows the absorbance values of the 
WST-1 test of HFLS after 24, 48 and 72 hrs incubation 
with (1-10 µM) or without (control) NaF. There were no 
significant differences in proliferative activities 
between HFLS cultured with NaF and the control 
culture (p>0.05). The results indicate that fluoride in 
the range of concentrations 1-10 µM has neither 
hyperproliferative nor antiproliferative effects in 
relation to HFLS. 

 

Apoptosis 
 

Cell apoptosis was evaluated by flow 
cytometry with Annexin-V/FITC staining, as shown in 
Figure 2. The cytometric analysis of cells was 
performed after 24, 48 and 72 hrs incubation with (1-
10 µM) or without (control) NaF. There were no 
significant differences the in percentage of apoptotic 
cells between HFLS cultured with NaF and the control 
culture (p>0.05). This shows that fluoride in the range 
of concentrations 1-10 µM neither induces nor reduces 
apoptosis of HFLS cell. 

 

mRNA expression of pro-inflammatory cytokines and 
metaloproteinases 

 

We showed the significant increases in 
expression levels of TNF-α, IL-6, IL-8, MMP-3 and MMP-
9 in response to NaF. The expression levels were 
dependent on time of exposure to NaF. The first 
significant increases in expression levels of all 
compounds were observed after 6 hrs incubation with 
5 µM and 10 µM NaF.  

 

The highest peak of TNF-α expression 
occurred after 12 hrs of incubation, when the 
significant increase in expression was for 2.5 µM (p = 
0.005) and 5 µM (p = 0.005), but not for 10 µM (p = 
0.298). These alterations were not observed after 24 
hrs. Expression of IL-6 peaked after 24 hrs (5 µM, p = 
0.03), but it should be noted that the effect of fluoride 
was most pronounced after 6 hrs (~4-, 5.5-, and 4.5-
fold of control expression after 6 hrs with 2.5µM, 5 µM 
and 10 µM, respectively vs. ~2-fold of control 
expression after 24 hrs with 5 µM). After 12 and 24 hrs, 
the increase in IL-6 expression was only observed for 5 
µM NaF (p = 0.045 for 12 h, p = 0.03 for 24 h).  

 

IL-8 expression peaked after 6 hrs of 
incubation with 5 µM (p = 0.01) and 10 µM (p = 0.008) 
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NaF. The significant effect of these concentrations was 
maintained to 24 hrs (5 µM: p = 0.008 and 0.01, 
respectively for 12 and 24 hrs; 10 µM: p = 0.01 and 
0.03, respectively for 12 and 24 hrs). 

  

The peak MMP-3 expression appeared after 6 
hrs with 10 µM (p = 0.02) NaF and after 12 hrs for 1 µM 
(p = 0.005), 2.5 µM (p = 0.008) and 5 µM (p = 0.005) 
NaF. The expression then decreased maintaining a 
significant increase only for 10 µM (p = 0.01). Similar 
dynamics of alterations in the expression was observed 
for MMP-9, with the difference that the significant 
increases in the expression after 24 hrs was maintained 

for 2.5 µM (p = 0.03), 5 µM (p = 0.02) and 10 µM (p = 
0.045) NaF. Moreover, MMPs expressions was most 
strongly induced at the lowest concentration, but this 
effect was later and short-term (only after 12 hrs) 
compared to the higher NaF concentrations (p = 0.005 
for both MMPs). 

  

 

 

Table 1. Sequences of primers used for quantitative real time PCR analysis 

 

Gene Forward Reverse 

B2M 5’-AATGCGGCATCTTCAAACCT-3’ 5’-TGACTTTGTCACAGCCCAAGATA-3’ 

TNF-α 5’-CCTCTCTCTAATCAGCCCTCTG-3'  5’-GAGGACCTGGGAGTAGATGAG-3' 

IL-6 5’-AATTCGGTACATCCTCGACGG-3'   5’-GGTTGTTTTCTGCCAGTGCC-3'   

IL-8 5’-ACTGAGAGTGATTGAGAGTGGAC-3' 5’-AACCCTCTGCACCCAGTTTTC-3'   

MMP-3 5’-AGTCTTCCAATCCTACTGTTGCT-3'   5’-TCCCCGTCACCTCCAATCC-3' 

MMP-9 5’-GAGATGTGCGTCTTCCCCTT-3' 5’-AGAATGATCTAAGCCCAGCGC-3' 

 

 

Figure 1.  The effect of sodium fluoride on the proliferation of HFLS. HFLS were cultured with (1-10 µM) or without 
(control) NaF for 24, 48 and 72 hrs. The absorbance values of WST-1 assay were given as mean ± SEM. *p<0.05 
compared to the control cell culture (Mann-Whitney U test). 
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Figure 2.  The effect of sodium fluoride on apoptosis of HFLS. HFLS were cultured with (1-10 µM) or without (control) 
sodium fluoride for 24, 48 and 72 hrs. The percentage of annexin-V positive cells were given as mean ± SEM. *p<0.05 
compared to the control cell culture (Mann-Whitney U test). 

 



Research paper, Rerich et al.  
 

 
 

Fluoride, Epub 2025 Apr 15: e346 
 

 

Page 6 of 9 
 

 

Figure 3. The effect of sodium fluoride on the mRNA expression of (A) TNF-α, (B) IL-6, (C) IL-8, (D) MMP-3 and (E) 
MMP-9 in HFLS. HFLS were cultured with (1-10 µM) or without (control) NaF for 6, 12 and 24 hrs. The relative mRNA 
expressions were given as mean ± SEM. *p<0.05 compared to the control cell culture (Mann–Whitney U test). 

 

DISCUSSION 

Excessive exposition of fluoride is a risk factor 
of arthritis.7,9,14 We hypothesized that fluoride affects 
FLSs, one of the major populations of synovium cells. 
The pathological process involving the synovium is an 
important component of the pathogenesis of RA.19 We 
found it interesting to investigate whether the same is 
true for joints disease associated with fluoride 
intoxication. Previously we reported that NaF (3-10 
µM) triggered inflammatory response of 
macrophages.20-23 We chose concentrations of fluoride 
ranging from the blood plasma levels of individuals 

from non-endemic regions (0.02-0.08 mg/L, 0.5-2 µM) 
to higher concentrations observed in individuals 
environmentally exposed to fluoride (>0.2 mg/L, >4.8 
µM), as previously.20-23 

 

This is the first research to evaluate the effects 
of fluoride on HFLS. In a normal state, FLSs play a key 
role in maintaining the homeostasis of joints – form 
normally organized synovial lining and release 
components of synovial fluid. In RA, phenotype of FLSs 
changes to tumor-like phenotype characterized by high 
proliferation, reduced apoptosis, increased expression 
of proinflammatory cytokines, chemokines, adhesions 
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molecules and MMPs. Joint microenvironment 
modified by FLSs promote recruitment of immune cells, 
inflammation and destruction of joint tissues.25 

 

We first verified whether fluoride induced 
changes in FLS growth typical of arthritis. We found no 
confirmation that fluoride at concentration of 1-10 µM 
stimulated hyperproliferation or affected apoptosis of 
HFLS. Researchers have shown that the effect on cell 
growth is concentration-, time- and cell-dependent. 
The increase in proliferation was observed over a wide 
range of fluoride micromolar concentrations. Based on 
research on various types of cells, it was established 
that the pro-proliferative effect appears after exposure 
to sodium fluoride in the concentration range 10-500 
µM.26-30 The lack of HFLS apoptosis induction is not 
surprising. The proapoptotic effect of fluoride is rather 
seen at millimolar concentrations in laboratory 
conditions and initiated through mitochondrion-, 
endoplasmic reticulum stress- or death receptor-
mediated pathways.31-35 We also did not observe a 
reduction of apoptosis. It is likely that the observation 
of the pro-proliferative and anti-apoptotic effects of 5-
10 µM NaF on HFLS is only visible at the molecular level 
or requires chronic exposure to NaF. This explanation is 
supported by Mendoza-Schulz et al.26, who found only 
a discrete induction of DNA synthesis, without a 
change in cell number, at a concentration of about 10 
µM. 

 

Synovial inflammation is important feature of 
arthritis mediated by numerous biologically active 
compounds such as pro-inflammatory cytokines and 
chemokines. TNF-α and IL-6 are central mediators with 
multidirectional function in the early phase of joint 
inflammation.36,37 TNF-α is an inducer of many 
arthritogenic genes, including IL-1β, IL-6, IL-8, CXCL-
1037, and MMPs associated with cartilage destruction.38 
IL-6 induces VEGF expression promoting angiogenesis, 
and then migration of immune cells. Infiltrating 
leukocytes produce additional pro-inflammatory 
cytokines and intensify inflammation.37 Moreover, TNF-
α together with IL-6 stimulate osteoclastogenesis, 
which promotes bone erosion.36,37 Both cytokines are 
considered pain mediators.39 In our study, increase in 
TNF-α and IL-6 expression were observed already after 
6 h incubation with NaF and they were most 
pronounced at a concentration of 5 µM. The action of 
10 µM NaF was shorter and weaker. An interesting 
observation was the increase in IL-8 expression after 
exposure to 5-10 µM NaF. IL-8 is another important 
player in arthritis due to its strong chemotactic activity 
on many different cells, including neutrophils and T 
cells.37,40,41 Moreover, IL-8 promotes the hypertrophy 
of chondrocytes, the calcification of matrix, and 
increases the levels of MMP-1 and MMP-13.42 The 
studies in animal models43-46 and cell models47-49 of 

fluoride intoxication support that fluoride induces an 
inflammatory response with an increase in the 
production of pro-inflammatory cytokines, including 
TNF-α, IL-6 and IL-8, and reactive oxygen species. 
However, it should be borne in mind that fluoride 
doses used in these researches were high and the 
researches concerned a different type of cells than in 
our study. 

 

Another important component of arthritis is 
the destruction of articular cartilage mediated by 
MMPs derived from FLSs.38 We showed the increases in 
the expression levels of MMP-3 and MMP-9 in HFLS 
after incubation with 5-10 µM NaF. So far, the increase 
in MMP-9 expression after exposure to NaF has been 
observed in osteoclasts in goldfish50, and in the bones51 
and the central nervous system52,53 in studies on 
rodent models. However, in the study published by 
Wad-dington and Langley, significant amounts of 
MMP-3 were demonstrated in preparations from rat 
bone cells cultured in the presence of fluoride (0.1 and 
10 µM), whereas only trace amounts were detected in 
cultures incubated without fluoride.54 We can suspect 
that the chronically sustained increase in the 
expression of these MMPs will lead to progressive joint 
destruction, such as in inflammatory diseases of the 
joints.55 MMP-3 has broad range of substrates, 
including proteoglycans, fibronectin, laminin, collagen 
telopeptides and basal lamina collagen IV. Moreover, 
MMP-3 is a key procollagenase activator, which can 
bind to collagen and regulate its turnover.56 MMP-9 
participates in the final degradation stage leading to 
the loss of proteoglycans and collagen from cartilage.57 
Besides the induction of the MMPs expression by 5-10 
µM concentrations, there was surprisingly a strong but 
short-term increase at the lowest NaF concentration. It 
is possible that this short-term effect of 1 µM NaF, 
unlike higher concentrations, will have beneficial 
consequences due to the participation of MMP-3 and 
MMP-9 in the formation and normal remodeling of 
bones and cartilages.58 Benefits of  treatment with low 
doses (≤20 mg/day of fluoride equivalents) of fluoride 
was described in osteoporotic patients. They include an 
increase in bone mineral density and a reduction of 
fracture risk associated with stimulation of bone 
formation.59 It would be wise to look at whether low 
doses of fluoride may be of benefit in joint diseases. 
 

CONCLUSIONS 
 

In summary, our study supports the 
hypothesis that fluoride at 5-10 µM concentration 
induces the alterations of pro-inflammatory cytokines 
and MMPs expression in HFLS, which may favor 
creating an inflammatory milieu in the synovium and 
predisposing to joint damage. 
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